ГЕОЛОГИЯ И ПЕТРОГРАФИЯ
СЕВЕРНОЙ КАМЧАТКИ
И ОСТРОВА КАРАГИНСКОГО

ТРУДЫ КАМЧАТСКОЙ
КОМПЛЕКСНОЙ ЭКСПЕДИЦИИ
1936—1937 гг.

Выпуск 3

ИЗДАТЕЛЬСТВО АКАДЕМИИ НАУК СССР
МОСКВА 1941 ЛЕНИНГРАД
Главный редактор акад. А. И. Заварицкий

Ответственный редактор В. П. Володавец
Д. С. ХАРКЕВИЧ

ГЕОЛОГО-ПЕТРОГРАФИЧЕСКИЙ ОЧЕРК О. КАРАГИНСКОГО

ВВЕДЕНИЕ

Остров Карагинский до наших исследований летом 1937 г. оставался геологически неназвым, если не считать тех скудных сведений о геологии острова, которые были доставлены участником экспедиции Федора Литке — Постельсом в начале прошлого столетия.

Остров Карагинский расположен в западной части Берингова моря, у северо-восточных берегов полуострова Камчатки.

Постельс только в нескольких строках своего сочинения указывает на наличие на о. Карагинском дислоцированных слоев конгломератов, песчаников и известняков, содержащих раковины пластиначатохордовых из рода Taliula, и на отсутствие пород вулканогенных. Это утверждение, как показали наши исследования, является ошибочным, ибо магматические породы пользуются широким распространением на восточном и северо-восточном побережье острова, где Постельсу, повидимому, не удалось произвести наблюдений. Он ограничился наблюдениями на западном побережье острова, где широким развитием пользуются осадочные породы третичного возраста. Постельс правильно отмечает различие в строении сообщной восточной и западной равнинной частей острова.

Со времени экспедиции Литке о. Карагинский не был предметом специальных геологических исследований, и это послужило основанием акад. Ф. Ю. Левицон-Лессину включить в план рекогносцировочных геологических исследований Камчатки 1937 г., проводимых Камчатской комплексной экспедицией СОПС АН СССР, геологическое изучение о. Карагинского, которое и было возложено на меня. В качестве топографа мною был призван к работе В. Д. Троцкий.

2 августа 1937 г. мы приступили к полевой работе, которую закончили окончательно 21 октября. За это время мы обошли весь остров и совершали несколько его пересечений. Весь рабочий маршрут составил около 700 км.

ГЕОЛОГИЯ ОСТРОВА

Остров Карагинский в геологическом отношении является частью п-ова Камчатки, связанной общностью геологической истории и геологического строения с полуостровом, и именно — с восточной его частью. Проступая к описанию геологии острова, мы должны, следовательно, коснуться основных черт геологического строения Камчатки.

Среди осадочных образований Камчатки различают четыре группы.

1. Докембрийские, или палеозойские образования, возраст которых точно установить нельзя, так как эти образования палеонтологически не характеризованы и определение их возраста производится по аналогиям с другими районами, гнейсами и кристаллическими сланцами, представленные слюдяными, ставролитовыми и другими сланцами, а также амфиболитами и фил-
литами. Богданович на основании наблюдаемой тесной связи слюдянных гранитов и гнейсов считал большинство гнейсов ортогнейсами, но поднейшие работы геологических отрядов АН СССР (Щербаков, 1988) показали, что большинство гнейсов Камчатки представляет собою парагнейсы, содержащие в своем составе силиманит, кордилерит, ставролит и графит, т. е. те минералы, которые выделяют первичную осадочную природу гнейсов. Гнейсы и кристаллические сланцы докембрия или палеозоя имеют ограниченное распространение на полуострове и составляют только южную часть Срединного хребта в пределах, лежащих между долинами рр. Быстрой и Облуконы, и хребет Ганалльские Вострики. Этот комплекс метаморфических пород сложен дислоцирован в складчатые структуры северо-западного простирания (Срединный хребет) и вмещает интрузии слюдянных и двуслюдянных гранитов и их жильных отпечатков — слюдянных и турмалиновых пегматитов и аplitов. Необходимо отметить, что эти граниты не образуют больших массивов, а внедряются в метаморфические породы в виде многочисленных неправильных жил и тонких инъекционных прожилков. Эти прожилки образуют распыляющие контакты с вмещающими породами, что указывает, на ряду с сильной мигматизацией гнейсов, на возможное апатититовое происхождение гранитного расплава.

2. Очень широком распространении осадочные породы, представленные глинистыми и кремнистыми сланцами, граувакковыми песчаниками и другими породами. Названные породы являются редко метаморфизованными до степени кристаллического сланца верхних эпох метаморфизма. Но обычно сильно трещиноватые и лишенные метаморфизма нормально осадочные слоистые породы морского происхождения в своем строении тесно связаны с диабазами, диабаз-порфiritами, порфiritами и их туфами и туфобрекчиями (Bogdanowitsch, 1904). Выходы этих пород известны на юге у подножий Мутновского вулкана и в окрестностях бухты Ахомтен; значительная часть восточной Камчатки, от Петропавловска до м. Начинкинского, сложена этими породами, где они составляют хребты Валагинский и Куморч, горы Камчатского и Начинкинского мысов; встречаются они также в районе бухты Корфа (Машковцев и Чурия, 1931) и т. д. В западной и центральной Камчатке эти породы не менее распространены; этот комплекс пород является до некоторой степени складчатым фундаментом Камчатки, на котором покоятся третичные осадочные и вулканические породы. Часто наблюдаемый выход их на поверхность объясняется поднятием глиб по линиям радиальных дислокаций (хребет Медвежий, мыс Омтон и др.) (Дьяков, 1935). Фациальные особенности этого комплекса пород разнообразно напоминают породы французской свиты североамериканских Кордильер, но (правда, немногочисленные) находки органических остатков в виде радиолярий и некоторых пластинчатожаберных с большой определенностью говорят о юрском возрасте этого комплекса, а о меловым, начиная от нижнего и до верхнего (Дьяков, 1932). Мезозойские породы Камчатки слабо пликативно дислоцированы с образованием структур главным образом северо-восточного простирания и прорваны интрузиями пород ит, пироксенитов, гранодиоритов и кварцевых диоритов, сопровождаемых иногда кварцевыми монцонитами. При этом, как нам удалось в хребте Ганалльские Вострики, интрузии пород ит предшествовали интрузиям гранодиоритов. Гранодиориты по своему минералогическому составу, структуре и химическому составу, а также по характеру сопровождающих их жильных и боковых пород, обнаруживают поразительное сходство с гранодиоритами североамериканских Кордильер и южных Анд. Такое же сходство гранодиоритов можно установить с навакскими неиодринами, с которыми их сближает наличие гранит, имеющего подчиненное значение в минералогическом составе пород по сравнению с эпизонными плагио-
3. В периферических частях полуострова большим развитием пользуются осадочные морские и континентальные породы третичного возраста, залегающие в большинстве случаев с угловым несогласием на мезozoических слоях. Третичные породы, в свою очередь, также пликативно дислоцированы, но в гораздо меньшей степени, чем мезозойские, а также часто динузективно дислоцированы. Направление дислокаций третичных слоев следует направлению дислокаций мезозоя. Широкое развитие сбросов, по которым движутся отдельные глыбы мезозоя, находящиеся в районах развития третичных пород, а также сравнительно слабая пликативная тектоника их, не сопровождающаяся метаморфизмом и интрузиями, ставится на зависимость от наличия ранее консолидированного мезозойского фундамента, реагированного на трансгрессивные напряжения разрывами. Дислокации третичного времени сопровождались излияниями лав андезитового и андезито-базальтового состава. Отложение третичных пород охватывает период от зоны до верхнего плюцена.

4. Среди четвертичных образований Камчатки различают морские осадки, залегающие на высоких террасах, ледниковое отложение, озерные, речные и дюнного отложения. Четвертичные осадки не испытали складчатых деформаций, но отложение их сопровождалось эфузивной вулканической деятельностью. Как можно судить по наличию высоких морских террас, Камчатка испытала в четвертичное время значительное поднятие, которое, повидимому, продолжается и теперь.

Таково в общих чертах геологическое строение Камчатки. К этому необходимо добавить, что в настоящее время вулканическая деятельность проявляется в восточной и южной частях полуострова, где сосредоточены ныне действующие вулканы, в то время как в западной части полуострова вулканическая деятельность прекратилась в значительной степени в плюцене и раннем антропогене.

Из этих четырех групп осадочных или первичноосадочных образований, играющих существенную роль в геологическом строении Камчатки, на о. Карагинском отсутствует только первая группа докембрийских или палеозойских кристаллических сланцев, все же остальные группы на острове широко распространены.

Мезозой

Мезозойские отложения о. Карагинского представляют собой в фацально-ном отношении полнокровную аналогию с такими же отложениями на Камчатке. Характер осадочных пород также одинаков для мезозоя острова и Камчатки.

Областию распространения мезозойских пород на о. Карагинском являются восточная гористая часть острова и возвышенный массив южного полуострова. Наиболее полно представлены они на востоке острова, где слой их образуют моноклинно-подчиненную структуру с северо-восточным простиранием и с северо-восточным падением.

По геохимическому-минералогическому признаку мезозой о. Карагинского может быть разделен на две крупные толщи: осадочную, представленную почти исключительно осадочными породами, среди которых в подчиненных количествах залегают излияния магматические породы, и порфировую толщу, в которой главную роль играют эфузивные агглютинированно-порфировые породы, их туфы и туфондюки. Роль осадочных пород в составе этой толщи ничтожна. Наиболее древней является осадочная толща.

Дальнейшее разделение внутри осадочной толщи возможно на основании литологических различий и условий залегания. Нами на этих основаниях осадочная толща разделена на две свиты, древнейшую из которых мы назвали свитой м. Ровного, а покрывающую ее — свитой м. Промежуточного.

Свита мыса Ровного. Породами этой свиты слагаются крайние восточные части острова, примыкающие к району м. Ровного. Областью распростра-
нения этих пород является широкая полоса, тянущаяся в северо-восточном направлении от устья р. Чейвам к устью р. Отчжинам. Отличительной особенностью этой свиты является наличие в составе пород, ее образующих, слоев черных и зеленых кремнистых сланцев, переслаивающихся с песчанниками темперацерного цвета и черными глинистыми осоколочными сланцами. Довольно часто среди слоев осадочных пород встречаются пластовые залежи спиллитов, обладающих иногда породовой отдельностью, излияния которых происходили одновременно с оледенением осадков, т. е. после характер подводных изливий.

Кремнистые и глинистые сланцы при сравнительно небольших усилиях раскалываются на мельчайшие остробрестные обломочки, что является, конечно, результатом механического воздействия на них во время орографического процесса, происходящего при низкой температуре и потому не способствующего процессами перекристаллизации пород. В кремнистых сланцах и других осадочных породах содержатся обычно вкраепления пирита и шаровые конкреции серного колчедана до 4 с в диаметре. Палеонтологические остатки в породах свиты м. Ровного обнаружить не удалось, и только в пластах кремнистых сланцев встречены мелкие пироморфы и радиолярии, имеющие шаровидные очертания. По всей вероятности, эта свита, продолжаясь севернее в район бухты Корфа, отвечает слоям кремнистых сланцев, встречающихся Чуриным и Маликовцем в районе бухты Корфа.

Среди мезозойских отложений Камчатки кремнисто-сланцевые породы пользуются довольно широким распространением; они встречены Богдановичем в Срединном хребте, в районе водораздела рр. Облукови и Киргина, Шербаковым в районе западных склонов Танальских Востряков, в хребтах Валиганском и Срединном, в верховьях р. Компаковой, другими авторами — в различных областях распространения мезозойских пород. Если на о. Кагачском кремнисто-сланцевые породы свиты м. Ровного являются наиболее древними и находятся в основании мезозойских пород, то в других районах Камчатки таких отношений установить нельзя и появление их там ограничено не только нижним мелом, но как результат отложения местных фаций они встречаются в различных по возрасту отделах мезозоя.

Свита мыса Промежуточного. Свита м. Ровного в верхних своих частях, постепенно лишается слоев кремнистых сланцев, переходит в свиту м. Промежуточного, тянущуюся широкой полосой западнее области распространения пород свиты м. Ровного, от устья р. Кайкотвам до устья р. Перевальной. В состав свиты м. Промежуточного входят темносерые среднезернистые песчаники, находящиеся то в более или менее тонком, то в грубом переслаивании с черными осоколочными глинистыми сланцами. Точно так же, как и в составе свиты м. Ровного, в составе свиты м. Промежуточного принимают участие пластовые и жильные залежи спиллитов и диабазовых порфиритов.

Темносерые среднезернистые песчаники состоят главным образом из плохо окатанных зерен плагиоклаза и кварца, к которым примешивается иногда некоторое количество вулканогенного обломочного материала. По своему внешнему виду и минералогическому составу они неотличимы от граувакковых песчаников, упоминаемых Наливкиным и Шербаковым; это сходство проявляется в характере слоистости и в переслаивании с глинистыми сланцами. Упомянутые здесь термины «глинистый сланец», мы должны подчеркнуть, что глинистые породы свиты м. Промежуточного не являются настоящими глинистыми сланцами, так как в них не наблюдаются сланцеватые текстуры и минеральные новообразования в виде серицита, но они представляют собой плотные глинистые породы, окрашенные немного рассеянной примесь углистых веществ в черный цвет, сильно развитые мелкой сетью трещинок,
по которым вся порода чрезвычайно легко раскалывается на многочисленные острогрунтовые обломочки. Южнее устья р. Кайкокоттам в глиннистом сланце удалось обнаружить чрезвычайно нежные обуглившиеся мелкие стаканы растений. Как в глинистых сланцах, так и в песчаниках встречаются вкрашения и небольшие конкреции серого кольчадана.
Среди мезозойских пород Камчатки во многих пунктах указывают отложения, аналогичные отложениям свиты м. Промежуточного о. Каранского, т. е. состоящие из переслаивающихся слоев гравийковых песчаников и глинистых сланцев (Наливкин, Щербаков). Насколько возможно параллелизовать все эти аналогичные образования по времени их отложения — сказать нельзя, так как они оказывают палеонтологически незаметными. Наливкин, например, гравийковую свиту Срединного хребта параллелезует с лесовской толщей Двала, часть которой палеонтологически характеризована верхнекембрийским формам.
Порфиритовая свита. Осадочная толща мезозоя о. Каранского покрывается мощной толщей порфиритов, их туфобреейчей и туфогенов, среди которых залегает пачка слоев переслаивающихся песчаников и глинистых сланцев, выделенная нами под названием слоев Цвейтатяр. Преобладающими в составе этой свиты являются, однако, темноzerosные, различных оттенков порфириты, описание которых дано в главе об изверженных породах. Порфиритовая свита слагает собой западную часть гористой зоны и тянется непрерывной полосой от м. Горбатого до устья р. Цвейтатяр, а также хребты Голенищева, Отдельный, Западный и горы южной части острова.
Слои Цвейтатяр. Среди порфиритовой свиты, приурочиваясь к ее верхам, залегает пачка слоев до 200 м мощностью, состоящая из переслаивающихся темноzerosных туфогенов песчаника и плотного оскольчатого глинистого сланца. В пестраниках наблюдаются небольшие шаровидные песчанистые конкреции. Встречены слои Цвейтатяр по западному склону м. Голенищева, в восточной части Окансской депрессии, в верховье р. Аньотаяна, по западному склону Центрального хребта и в устье р. Цвейтатяр. По всем местам своего появления они обладают одинаковым характером слоистости и литологического состава. В устье р. Цвейтатяр в одном из слоев глинистого сланца удалось собрать плохой сохранности фауну, представленную семействами Dentaliidae, и очень плохой сохранности раковины пластинчато-жаберных, позадом, из семейств Nuculidae. Характер раковин Dentaliidae (до конца не обработанны) позволяет считать возраст слоев Цвейтатяр в промежутке между верхним мелом и эоценом.

* * *

Порфиритовые излияния предшествовали крупной орогении, сменившей слой мезозоя, и происходили, повидимому, в аналогичных условиях, какие мы наблюдаем в Курильской и Алеутской вулканических дугах.
Мощность мезозоя о. Каранского не может быть сейчас определена более или менее точно, но она несомненно измеряется километрами, что свидетельствует об отложениях этой породы в бассейне геосинклинального типа. Мезозойские отложения о. Каранского интрудированы ультраоснововой перидотитовой магмой и вмещают довольно большие массивы пери-
дотитов и связанных с ними дунитов, пироксенитов, гарzburgит-серпентинитов, серпентинитов и др. Самый крупный из этих массивов имеет в длину около 25 км и наибольшую ширину 4—5 км и протягивается от восточных берегов острова, между устьями рр. Цвейтатяр и Кайкокоттам на юге, до северных отрогов горного массива Саксоноваль, проходя по западному склону. Второй крупный массив расположен в южной части острова и слагает гору Южную. Вмещает этот массивы ультраосновных пород главным образом порфиритовая свита. За внедрением перидотитовой магмы
следовали внедрения дюритовой магмы, образовавшей небольшие массивы по западной окраине центрального перидотитового массива, а также ряд жил лампрофира, кварцевого дюрита, дюрит-порфирита и др. С дюритовой магмой связаны внедрения кварцево-диоритовых и гранодиоритовых пород, часто встречающихся в береговых гальках и валунах и характеризующихся наличием в их составе свежего сапида-апортокластового полевого шпата. Главные массивы этих пород располагаются, вероятно, в абрадированной части о. Карагинского, откуда выносятся течениями и прибоем гальки и валуны их.

Мезозойская толща о. Карагинского после своего отложения была пликативно дислоцирована с образованием структур северо-восточного простирания. В части, развитой на о. Карагинском в настоящее время, мезозойские слои представлены в моноклинальной структуре, с простиранием слоев С4—ЮЗ и падением на СЗ. Пликативные дислокации мезозоя происходили, повидимому, в палеогеновое время, но точно определить время этих дислокаций не представляется возможным вследствие недостатка палеонтологического материала. Известно, что олигоцен-миоценовые морские слои залегают с угловым несогласием на мезозойских отложениях, но более точных данных о времени пликативных дислокаций мезозоя о. Карагинского у нас нет.

Кайнозой

Кайнозойские отложения третичного и четвертичного периодов пользуются на острове широким распространением в его южной и западной частях. За редкими исключениями почти все свиты, выделенные на основании различных в литологическом составе, оказывают хорошо палеонтологически охарактеризованными, что дает возможность непосредственного определения их возраста. Третичные отложения представлены почти исключительно мелкощелочных породами морских мелководных формаций, и роль туфогенных образований в общем составе этих отложений ничтожна по сравнению с ролью этих образований в составе третичных отложений восточной Камчатки. В настоящем очерке мы сознательно отказываемся от параллелизации разреза третичных отложений о. Карагинского с таковыми восточной Камчатки, для которой еще нет определенной стратиграфической схемы, и западной Камчатки, так как работами Нефтяного геолого-разведочного института для последней получен ряд новых данных, в корне меняющих те представления о стратиграфии третичных, которые опубликованы в работах Н.Я. Дьякова (1935) и Слободченко (1936). Вопрос ставится не только об уточнении возраста отдельных свит, выделенных на основании литологического состава, но и об их стратиграфической последовательности. Так, выделенные ранее в самостоятельные стратиграфические единицы литологические свиты оказываются по новым данным лишь фациальными изменениями одной и той же свиты (устное сообщение Н.Я. Дьякова). С другой стороны, если в прежнем представлении третичные в своих нижних частях относились к времени не древнее олигоцена, то в настоящее время ряд новых данных позволяет установить воен и даже олигоцен.

Существенной особенностью третичных отложений о. Карагинского является отсутствие континентальных формаций, которые известны в западной Камчатке и в районе залива Корфа (угленосный олигоцен), и вся толща их представлена морскими осадками, правда, не глубоководными.

Третичные отложения

Третичные отложения пользуются широким распространением в южной и западной частях острова; из них состоят также Канкальская, Оканская и северная часть Пыцынской депрессии. На складчатом мезозое они зале-
гают трансгрессивно с угловым несогласием, и материалом для образования мощных терригенных толщ их слушник, несомненно, мезозойские породы, что подтверждается наличием галек и обломков мезозойских пород в третичных конгломератах и песчаниках. Дислоцированы третичные отложения в гораздо меньшей степени, чем мезозойские отложения; при этом направление дислокационных напряжений оставалось прежним, и это обусловило параллельность простирания складчатых структур мезозой и третичных. Пликативные дислокации третичных сопровождались дизьюнктивными дислокациями, что ставит в связь с наличием ранее консолидированного мезозойского фундамента, реагированного на позднейшие тангенциальные напряжения разрывами.

В возрастном отношении в составе третичных отложений острова принимают участие отложения олигоцена, миоцена и плиоцена.

Палеоген

Олигоцен. Оканские базальные слои. В восточной части Окансской депрессии в береговом обрыве обнаружены мезозойские слои Цветайтагур, падающие на ЮВ под 70°, на которых с угловым несогласием залегают слоистые грубы конгломераты, содержащие крупные валуны и гальки мезозойских пород, главным образом порфировой свиты, перекрывающей выше с грубыми серыми песчаниками и постепенно переходящими в серье грубы полимиктовые песчаники с редко рассеянной галькой мезозойских пород и содержащих отпечатки и ядра Tellina sp., Nucula sp.

Падение конгломератов и песчаников на СЗ 320°, 30°. Мощность (неполная) базальных слоев — около 100—150 м.

Плохая сохранность фауны исключает возможность точного ее определения, и это не дает возможности непосредственно определить возраст слоев. С другой стороны, оканские базальные слои выступают в изолированном выходе, где не удается наблюдать налегание на них слоев, возраст которых определялся бы точно, чем давалась бы возможность судить до некоторой степени определенно о возрасте базальных слоев. Мы склонны ставить их в основание разреза третичных отложений о. Карагинского, в составе которых принимают участие миоценовые отложения, и, таким образом, относить условно возраст оканских базальных слоев к верхнему олигоцену.

Неоген

Миоцен. Туфогенная свита. На восточном берегу о. Карагинского, севернее устья р. Мейнкакалгут, в районе устья р. Ильгутун и в районе м. Тонс выступают слои туфогенной третичной свиты, состоящей из слоистых грубых темносерых туфовенных песков, перекрывающихся с туфобрекчиями андезито-базальтов, содержащих глыбы и обломки андезито-базальтов и вулканические бобымы, и туфоконгломератов, содержащих окатанные гальки андезито-базальтов. В составе этой свиты принимают участие заливы андезито-базальтов и базалтов (р. Мейнкакалгут, м. Тонс). Палеонтологических остактов в породах этой свиты обнаружить не удалось, так же как и выявлять соотношение с базальными слоями Оканс, так как в Оканской депрессии, да и вообще на севере острова, туфогенная свита отсутствует. Севернее устья р. Мейнкакалгут туфогенная свита находится в тектоническом контакте с мезозойскими слоями, и ее нормальное соотношение с мезозоем установить также не удалось.

По всем вероятностям, туфогенная свита в некоторой своей части представляет собой вулканогенную фацию слоев Оканан, отражающую близ центров вулканических извержений. Она покрывается слоями среднего миоценена, фаунистически охарактеризованного, что служит основа-
нием считать туфогенную свиту нижнемиоценовой и, частью, олигоценовой.

Мощность этой свиты — не менее километра.

Песчанники с *Laterula besshoensis* J o k. В западной части Камчатской депрессии, где сходят своими верховьями рр. Мейянкакамаль и Лимити, согласно налега на туфогенную свиту, выступают плотные слоистые тонкоплитчатые свелложение стые в выбыткам состояни серье в своем изломе среднемиоценовые песчанники, содержащие широкие известняковые конкремции, в которых часто содержатся раковины пластинчатожелобных и гастропод, а также иногда кости позвоночных.

Из моллюсков здесь встречены: *Actia* sp., *Cardita* sp., *Laterula* (*Aegla*) *besshoensis* (J o k.), *Macoma nasuta* (C o n t r a d.), *Thyasira disjuncta* (S t e w.) var. *ochotica* (L. K r i sh.), *Turritella tokunagai* (J o k.).

Аналогичные песчаники встречены в нижнем течении р. Ильгукуп по западному склону хребта Западного, сложенного туфогенной свитой. Здесь удалось определить: *Thyasira disjuncta* (S t e w.) var. *ochotika* (K r i sh.), *Macoma* cf. *nasuta* (C o n t r a d.), *Macoma* sp., *Thyasira* sp.

В береговых обрывах западного берега острова, несколько севернее перешейка Аттарман, выступают тонкоплитчатые серые песчанники с редкими паровыми конкремциями темносерого известняка, среди которых встречаются прослой тонкослоистых косослоистых мелкогалечных конгломератов, содержащих паровые известняковые конкремции. Здесь удалось собрать фауну, заключённую в конкремциях, из которой определены: *Laevicardium* (*Cerasoderma*) *shinjense* (J o k.), *Liocyma fluctuosa* (G l d.), *Macoma nasuta* (C o n t r a d.), *Macoma* sp., *Thyasira* sp.

Одновременно с этими песчанниками или несколько древнее их следует считать то мелкомиоценовые песчаники с конкремциями известняка, то круглозермовые песчанники с прослой конгломерата и тонкими линзами (в 1 см мощностью) бестяжного угля или черно-серыми песчанниками, выходящими в обрывах восточного берега в районе перешейка Аттарман, где удалось собрать фауну и определить: *Cardita* sp., *Laevicardium* (*Cerasoderma*) *californiense* (D e s h.), *Laevicardium* (*Cerasoderma*) *shinjense* (J o k.), *Liocyma fluctuosa* (G l d.), *Liocyma* n. sp. *Macoma nasuta* (C o n t r a d.), *Bulla* sp., *Natica clausa* (B r o d. and S o w.), *Neptunea* (*Sulcosipha*) *magna* (D a l l.) var. *staniana* (A r n.), *Turritella tokunagai* (J o k.). В обрывах восточного берега, южнее с. Слуцкая, где грубые песчаники с прослоями конгломерата с галькой мезозойских пород и графита содержат фауну моллюсков, ветвистых кораллов и растительных детритов, определены: *Laevicardium* (*Cerasoderma*) *rhombodeum* (K h o m.), *Laevicardium* (*Cerasoderma*) *shinjense* (J o k.), *Macoma* sp., *Natica* cf., *clausa* (B r o d. and S o w.).

Состав фауны, именно наличие форм, не выходящих за пределы миоценена (*Laterula* (*Aegla*) *besshoensis* и *Laevicardium* (*Cerasoderma*) *rhombodeum*), определяет возраст этих отложений миоценовым. Мы склонны считать возраст этих отложений среднемиоценовым.

Пестроцветная свита. По западному берегу, севернее выходов песчаников предыдущей свиты, в береговых обрывах выходят окрашенные по плоскостям отдельности в яркие красно-бурые железистые тонкие слоистые песчаники, переслаивающиеся с плотными черными глинистыми сланцами скорлуповатой отдельности. Залегают они на нижележащих песчаниках согласно.

Южнее с. Голенищева по западному берегу пестроцветная свита в своем основании состоит из плотных конгломератов, окрашенных охристым цветом, выше поступающим переходящим в чередующиеся слои песчаника и глинистого сланца скорлуповатой отдельности, содержащего мелкие мергелистые конкремции, в одной из которых удалось найти раковину *Fusinus* sp. Мощность этой свиты около 500 м.
Породы пестроцветной свиты были нами встречены в Пыхинской депрессии и в верхнем течении р. Гундоя, где в них содержатся крупные шаровые и дисковидные конкреции мергеля.

Ведущим фаунистическим остатками не дает возможности сделать определенное заключение о возрасте этой свиты; учитывая факт более высокого залегания этих слоев по сравнению со свитой с Luternula bessochoensis, мы относим пестроцветную свиту к верхнему миоцену. Все вышеперечисленные свиты можно синхронизировать, по всей вероятности, с волынпельской свитой западной Камчатки.

Плиоцен

Песчаники с Mya karaginskiiensis n. sp. На размытой поверхности ранее дислоцированных слоев пестроцветной свиты с угловым несогласием закладывает мощная толща грубоверстистых серых песчаников, плохо сплошных, обладающих крупной галькой глыбовидной отдельностью и содержащих часто в своем составе гальку мезозойских пород острова, графита и андезито-базальта. Кроме того, песчаники этой свиты содержат в чрезвычайно большом количестве крупные шаровые песчанистые-мергелистые концентрации. Встречены выходы этих песчаников в северо-западной части острова, по берегу моря, севернее м. Пропущенного, где отчетливо наблюдается угловое несогласие между ними и пестроцветной свитой, и в юго-западной части острова—в береговом обрыве южнее устья р. Пыхтаным и севернее выходов пестроцветной свиты.

Интересно отметить, что в северо-западной части острова песчаники содержат чрезвычайно много конкретий, которые при разрушении песчаников морем остаются неразрушенными; скопления их устлывают морской пляж в районе развития песчаников.

В северо-западной части нам удалось собрать следующую фауну: Cardita sp., Macoma sp., Maetra (Maetromastoma) ciliornicata onnischura (Otuka), Nuculana (Lea) sp., Serripes gronlandicum (Gmelin), Natica cf. clausa (Br today and So w.). В юго-западной части в песчаниках нам удалось собрать несколько экземпляров Mya karaginskiiensis n. sp. В песчаниках иногда встречаются обуглившиеся древесные остатки, что свидетельствует о прибрежном мелководном их происхождении.

Фауна не дает возможности точно установить возраст этой свиты, но наличие Serripes gronlandicum, типичной плиоценовой и плеистоценовой формы, позволяет нам отнести эту свиту к плиоцену. Стратиграфическое положение свиты позволяет нам отнести ее к нижнему плиоцену. Мощность свиты около 600 м.

Свита мыла Плоского. Стратиграфически выше песчаники с Mya karaginskiiensis сменяются согласно накладывающей мощной толщей однообразных жесткевато-белых с поверхности и серых в свежем изломе сплошных оконоподобных пород. Оконоподобные породы тонкозернисты, обладают раковинчатым изломом, содержат редкие гальки гранитных и мезозойских пород и многочисленные шаровые и линзовидные мергелистые конкреции. Обнажена эта свита в северо-западной части острова в береговом обрыве, в районах мысов Пропущенного и Плоского, в юго-западной части острова—в районе устья р. Пыхтаным, где она также обнажена прекрасно в береговых обрывах, в районе с. Лимитное, где среди оконоподобных пород залегает слой туфоблекчей и где они вмещают шток оливинового базальта, в контакте с которым они превращаются в кремень, и в других местах. Обычно оконоподобные породы этой свиты содержат очень плохой сохранности фазуну моллюсков, но на м. Плоско среди них залегает небольшая линза грубого песчаника, из которого удалось собрать фазуну хорошей сохранности, представленную: Actia divaricata (Hinds.), Cardita karaginskiiensis n. sp., Cardita sp., Macoma sp., Joldia scapha (Jok.), Joldia tokunagai (Jok.), Psppnea weavery (Tegland).
Фауна носит довольно смешанный характер из форм миоценовых (Joldia tokunagai и Psepha weavary) и плиоценовых. Возраст этой свиты мы определяем как нижне- и среднеплиоценовый. Мощность около 1200 м.

Свита Анотванна. Опоковидные породы свиты м. Плоского покрываются мощной свитой слоистых пород, представленных грубообломочными, слабо слоистыми серыми песчаниками и конгломератами, в состав которых входят гальки мезозойских пород, навонообразных эффузивных пород и опоковидных пород свиты м. Плоского. Это свидетельствует о некотором несогласии в залегании конгломерато-песчанистой свиты Анотванна и свиты м. Плоского, не наблюдаемом, однако, непосредственно в обнаруженных контактах этих свит.

В северо-западной части острова пизы этой свиты обнаружены в обрыве морского берега на м. Пропущенном; в юго-западной части эта свита полностью обнажена в береговом обрыве между устями рр. Пыхтамым и Лиимпами, в центральной части острова она выступает в береговых обрывах р. Талевым, правого притока р. Анотванна, где удалось собрать фауну в виде ядер и отпечатков раковин, а также найти ребро крупного моллюски-того, повидимому, китообразного, и обуглившиеся растительные остатки.

Из моллюсков здесь определены: Cardita sp., Cardium sp., Laevicardium (Ceratoderma) corbis (M a r t.), Laevicardium (Trachycardium) cf., burchardi (D u n k e r), Maectra (Spisula) polynyma (S t i m p.), Serripes grunlandicus (G m e l i n), Tellina cf., inea (G r a y). Фауна носит типичный плиоценовый характер. Среди перечисленных форм большинство существует до настоящего времени. На основании главным образом стратиграфического положения мы эту свиту относим к нижнему плиоцену. Мощность ее — около 400 м.

Свита Лиимпам. На песчанисто-конгломератовую свиту Анотванна налагает мощная свита тонкозернистых песчаников, обладающих слабой плотностью, серо-зеленоватым цветом и содержащих конкреционные пропластки и концентрации моргеля с большим количеством раковин большинства моллюсков.

Прекрасно обнажается эта свита в обрыве морского берега южнее устья р. Лиимпам.

В нижней части свиты была собрана фауна, из которой определены: Acila (Truncacila) coboldiae (S o w.), Cardita crabricostata (K r a u s e), Serripes grunlandicus (G m e l i n), Maecoma nasula (C o n r a d), Maecoma dissimilis (M a r t.), Mya arenaria (L.) var. japonica (J a y), Nuculana (Leda) sp., Joldia traciaeformis (S t o r e r), Neptunia hirata (M a r t.),

В верхней части свиты собрана фауна, из которой определены: Astarte borealis (S c h u m.), Laevicardium (Trachycardium) burchardi (D u n k e r), Peoten sp., Serripes grunlandicus (G m e l i n), Natica clausa (B r o d. a n d S o w.), Neptunia n. sp., Balanus sp. Фауна — плиоценового характера; большинство перечисленных форм доживает до настоящего времени. Нами эта свита отнесена к верхнему плиоцену. Мощность — около 400 м.

Слои бухты Ложных Вестей. На берегу бухты Ложных Вестей, южнее поселка рыбного комбината, обнаружены опоковые, плохо слоистые, тонкозернистые, слабо слоистые породы, содержащие редкие шаровые мергелистые конкреции, в которых обычно включены раковины.

Установить соотношение этих слоев со свитой Лиимпам не удалось, но следует предполагать, что слои бухты Ложных Вестей являются верхним членом этой свиты.

Фауна, собранная здесь, представлена: Joldia sp., Joldia traciaeformis (S t o r e r), Maecoma brota (D a l l), Colus halimetrus (D a l l), Neptunia plicata (A d a m s).

Раковины имеют поразительную свежесть, так что сохраняется прозрачность раковины Joldia sp. Все эти формы доживают до настоящего
времени, кроме Joldia sp., которая, возможно, представляет собою новый вид. Таким образом, фауна не дает основания считать эти слои плиоценовыми (правда, наши сборы недостаточны для категорического утверждения), и, возможно, эти слои следует отнести к неоплиоцену, дислоцированному в одну fazu с плиоценом. Мощность их не выяснена.

Нижнеантропические пески. На западном морском берегу, севернее устья р. Анотванна, в основании 10-метровой морской террасы залегают рыхлые косослоистые серьез пески, содержащие в большом количестве обломленные кореньевица ламинарии. На размытой поверхности этих песков с ламинариями залегают слоистые валунно-галечники плистоценовой морской трансгрессии. Мощность нижнеантропических песков выяснить не удалось.

Нижнеантропические пески мы склонны отнести к плистоцену, так же как и слои бухты Ложных Вестей.

Четвертичные отложения

Морские отложения. Плейстоценовая трансгрессия моря, охватывшая многочисленные области побережий Тихого океана и его морей, оставила свои следы на о. Карагинском в виде нескольких абразионных террас, покрытых слоем морских галечников и песков, мощность которых на 50-метровой террасе достигает 20—25 м. Галечники и пески, покрывающие морские террасы, встречены на террасах, абсолютные превышения которых составляют 100, 50, 25—20, 12—10 и 7—5 м. Обычно эти галечники и пески являются рыхлыми и не содержат фауны.

Слои Аттаман. Несколько севернее и южнее м. Слюнник отложения плистоценовой морской трансгрессии выполняют большие промоины среди дислоцированных третичных слоев. Ширина промоины, расположенной южнее м. Слюнника, достигает 1.5 км, а севернее мыса — 0.75 км.

В промоине, расположенной южнее м. Слюнника (обнажения до 25 м высоты), состав отложений следующий:

а) в основании залегает слой рыхлого песка, содержащий обломки третичных пород, развитый по бокам промоины, а к центру уходящий под уровень моря;

б) выше залегает линза (до 10 м мощности) черной, вязкой, богатой мелкими обугливающимися растительными остатками глины, содержащей чрезвычайно тонкостенные раковины пластинчатохоберных;

в) покрываются глины рыхлыми песками и галечниками, содержащими в чрезвычайно большом количестве морскую фауну идеальной сохранности. Здесь определены: Cardita crebricostata (Krause), Laevicardium (Gerastoderma) californiense (Desh.), Macoma nasuta (Conrad), Macoma inquinata (Desh.), Mya arenaria (L.) var. japonica (J a y), Mytilus edulis (L.), Mactra (Spisula) polymyma (S t i m p s.), Seligia alta (Br o d. and S o w.), Balanus sp., Tellina venulosa (S c h r e n k.), Paphia adamsi (R e v e e), Venus rigida (G l d., O j i.), Natica clausa (Br o d. and S o w.), Purpura freycinetii (D e s h.), Ranella (P r i e n e) oregonensis (R e d f i e l d), Patella sp. Фауна носит характер современной фауны северной части Тихого океана.

**

В западной части о. Карагинского, между долинами рр. Анотванна и Маркеловской, развита низкая морская терраса (7—5 м абс. выс.), сложенная песками и галечниками, которые включают линзы и покрываются пластами лугового торфа. Повидимому, здесь мы имеем дело с отложениями быстрых маршей.

В устьях рр. Анотванна и Гулячка, а также в районае м. Лекало, песчано-галечные морские отложения образуют сравнительно большие площади путем приотложения друг к другу древних береговых валов. По своему
возрасту эти отложения являются самыми молодыми из морских четвертичных отложений. Одновременно с ними являются песчано-галечные отложения, слагающие морскую памятную косу, оттораживающую бухту Ложных Вестей.

Ледниковые отложения. Четвертичное оледенение на острове носило исключительно локальный характер и было приурочено к наиболее возвышенной части острова, именно — к горному массиву Саконовал. В районе массива Саконовал существуют мертвые ковры, количество которых с западной стороны достигает трех. Ледники спускались по долинам до подножий хребта. Длина их не превышала 4 км. У западных подножий массива Саконовал сохранились гряды кочекных морен, сложенных песчано-галечным материалом.

Аллювиальные отложения приурочены к речным долинам, где они слагаются пойменные части долин и речные террасы, которые не всегда хорошо выражены в долинах различных рек. Значение этих отложений в строении острова ничтожно.

Тектоника острова

В стратиграфическом очерке мы указали на некоторые элементы тектоники отдельных свит и на несогласия в залегании этих свит. Ясно выраженное угловое несогласие, существующее между верхним мелом (?) и олигоценом (?)-миоценом, показывает, что в промежуток времени от верхнего мела до олигоцена (?)-миоценом район о. Карагинского был подвержен сильной складчатости, создавшей структуры северо-восточного простирания, — складчатости, по времени совпадающей, повидимому, с Ларамийской складчатостью Кордильер Северной Америки. Во-вторых отчетливо выражено угловое несогласие свита костеновской свиты костеновской подсвиты караскинских с Mya karaginskiensis и, вероятно, существует некоторое несогласие между свитой М. Плоского и свитой Аготвана. Если относить к нижнему плейстоцен костеновской свиты бухты Ложных Вестей и нижнеантильских песков с островами корне- виш ламинаций, как это указывалось в стратиграфическом очерке, то можно сказать, что в плейстоцене происходила сильная складчатость, сопровождающаяся большими разломами, определявшая угловое несогласие между нижними плейстоцен и слоями Аттарман и соответствующая по времени Каскадной складчатости запада Северной Америки. Неогенные фазы складчатости и плейстоценовая складчатость действовали в одном направлении с Ларамийской складчатостью и образовали структуры, параллельные структурам Ларамийской складчатости.

Дислокации мезозоя

Мезозойские отложения о. Карагинского, как уже указывалось, были плакитативно дислоцированы в налегении при Ларамийской складчатости. В настоящее время мы наблюдаем только часть какой-то большой складчатой структуры, в которой слои имеют северо-восточное простирание и моноклинально падают на СЗ. Правда, в пределах северо-восточных простираний мы имеем большие колебания в направлениях от 10° СВ до 80° СВ, но преобладают направления 40—55° СВ, что служит основанием считать общее направление складчатости северо-восточным, а те или другие уклонения от этого направления в залегании слоев нужно приписывать или востребованной складчатости, или наличию глубоких смещений по линиям радикальных дислокаций. Так, слои Цейтейт в верховье р. Аготвана и западнее м. Голеницова имеют северо-восточное простирание 50—70° и налегание на СЗ под 70°, согласно с направлением складчатости мезозоя, но при устье р. Цейтейт они имеют простирание СЗ 340°, налегание под 75° на ЮЗ и между устьями р. Оканан и м. Горбатым — налегание
под $\angle 70^\circ$, на ЮВ 185°, что должно быть объяснено наличием радиальной дислокации, которая и наблюдается отчетливо в области м. Горбатого. Углы падений слоев за редкими исключениями колеблются в пределах от 45 до 90°, но превосходят углы падений от 45 до 70°.

Вообще говоря, наблюдается усиление пликативной тектоники мезозоя с запада на восток, где в области развития свиты м. Ровного сильно проявляется клаярк и возникает второстепенная складчатость, ориентированная простирающим осей складок параллельно общему простиранию мезозойских слоев. Наблюдавшись второстепенные складки имеют ширину до 3—4 м и, как правило, наклонены или доведены до почти лежачего положения с наклоном оси на СЗ и, следовательно, с опрокидыванием на ЮВ.

Наблюдения над радиальными дислокациями мезозоя, синхроничными Ларамийской складчатостью, затруднены чрезвычайным однообразием литологического состава мезозойских отложений, что позволяет лишь наблюдать или небольшие смещения слоев по сбросам, или крупные разломы, которые, однако, вероятнее всего, относятся к более позднему времени. Ряд параллельных сбросов северо-восточного простирания наблюдается между м. Горбатым и долиной р. Оканая, по ним выдвинута небольшая глыба песчаников и глинистых сланцев с конкретными типа пород свиты м. Промежуточного и приведена в стык с породами порфировой свиты. Здесь же сюда Цветатель скелет слоем небольшой амплитуды с падением сбрасывается на СЗ под $\angle 50^\circ$.

Повидимому, радиальные дислокации, синхроничные Ларамийской складчатости, предопределяли собой возможность внедрения магматических масс перidotитового и диоритового состава, что видно из определения массов перidotитов и их северо-восточного уклонения в плане.

Все вышеизложенное показывает, что дислокации мезозоя происходили под воздействием тангенциальных сил СЗ—ЮВ направления с движением масс, как нам кажется, на ЮВ.

Дислокации неогена и постплiocена

В неогене район о. Карагинского, как мы видели в стратиграфическом очерке и в начале этого раздела, подвергался неоднократно пликативным дислокациям, определяющим угловое несогласие в залегании отдельных свит неогена. Наиболее сильно проявились фаза складчатости в верхнем миоцене, определявшая несогласие между свитой песчаников с *Mya kara*ngens*kiensis* и пестроцветной свитой, но главная фаза складчатости, пликативно дислоцировавшая слои плиоцен и постплиоцен (свиты бухты Ложной Вестей и нижнеантичанские пески) и сопровождавшаяся крупными разломами и сбросами, происходила в постплиоценовое время. Кроме этих двух фаз, мы предполагаем некоторое нарушение в плиоцене, определяющее резкую смену фаун от озоновых пород свиты м. Плоского к песчаникам и контгломератам свиты Ангтвана. Тангенциальные направления имели те же направления, что и при Ларамийской складчатости, что и повело к образованию складчатых структур северо-восточного направления. Отличительной особенностью новейших дислокаций района о. Карагинского является наличие крупных радиальных разломов, по которым происходили вертикальные перемещения большой амплитуды, иногда измеримой сотням метров и километрами. В результате этих перемещений были приведены в тектоническое соприкосновение различные свиты третичных отложений и мезозойские слои с верхнеенеогеновыми.

Пликативные дислокации миоценовых слоев, вообще говоря, выражены несколько сильнее, чем плиоценовых и постплиоценовых, но особенно
сильно дислоцирован миоцен (пестроцветная свита) в северной части Пыкнинской депрессии, заключенной между хребтом Отдельным и хребтом Голенищева, где в долине р. Колькьям слои миоцена падают на СЗ под уголом от 85 до 75°, уклонение слоев северо-восточное, а азимутом от 35—55°. В верхнем течении р. Глушеням слои пестроцветной свиты также показывают сильную дислоцированность с северо-западным падением под углом от 50 до 90°, несколько более спокойный характер в залегании миоценовых слоев наблюдается в северной части острова, между мысами Голенищева и Пироговским, где при северо-западном падении слоев уклон падения не превосходит 50°, а также в южной части острова, по западному побережью, между устьями р. Пыхтиной и перешейком Аттарман, где песчаники с Laternula и пестроцветные слои при северо-западном падении имеют угол падения до 30°. Площадно-родная и плоскоконечные слои (свита бухты Ложных Вестей и нижней юрской пачки) дислоцированы несколько слабее миоценовых слоев. В общем замечается ослабление плоскобывой дислоцированности слоев с востока на запад от более древних пород и более молодых. Площадно-родная и плоскоконечные слои имеют СВ 45° проистяние и СЗ падение под углом до 25—30°.

Дизъюнктивные дислокации постпенонового возраста, одновременно с складчатостью или происходящие несколько позднее ее, играют очень крупную роль в тектонике о. Карагинского. Именно ими обусловлено наличие тектонических депрессий, определяющих характер поверхности острова в северной и южной части его, а равно и глубокая тектоника третичных слоев в юго-восточной части острова. В северной части острова депрессия с долиной р. Оканан с запада ограничена хребтом Голенищева, выдвинутого на сбросу большой амплитуды северо-восточного 30° направления, на котором приведены в тектонический контакт пенноновые слои свиты м. Плоского, залегающей восточное плоскости сброса с порфировой свитой мезозоя, слагающий хребет Голенищева. Площадь сброса несколько наклонена на СЗ. Этот большой сброс сопровождался более мелкими сбросами, секущими третичные слои в западной части Оканской депрессии, и вызвал в некоторой части их пологую второстепенную волнистость. По направлению к югу сброс затухает в районе с. Желаниной, расположенной в верховье р. Оканан.

Западнее хребта Голенищева, отделяясь от него депрессией с долиной р. Пыхин, тянется параллельный хребет Талихал, прорезанный поперечными долинами рр. Колькьям, Маркеловской и др. и обладающий своими пропищдением сбросу, по которому также приведены в тектонический контакт породы порфировой свиты мезозоя, слагающие хребет Талихал, с пестроцветной свитой миоцена, слагающей северную часть Пыхинской депрессии. Этот сброс прослеживается от северного побережья острова, восточной окраины хребта Талихал и по долине р. Пыхин, левого притока р. Маркеловской, до массива Саконоваль, где он теряется, постепенно затухая.

Эти два больших сброса определяют виргацию горной зоны о. Карагинского в северной ее части.

Третий крупный сброс, амплитуда которого измеряется километрами и по которому приведены в тектоническое сочленение породы порфировой свиты мезозоя с миоценовыми слоями, содержащими Laternula besshoensis J. о. к., проходит по восточному склону хребта Западного. Этим сбросом определено наличие хребта Западного, сложенного порфировыми мезозоя, и Камчатской депрессии с долиной р. Мейннакалшту, сложенной тектоническими третичными слоями и нормальноосадочными морскими породами, содержащими раковины Laternula besshoensis J. о. к., — руконошение вид для среднего миоцена. Сброс прослеживался от устья р. Мейннакалалу на восточном побережье острова до слияния главнейших исто-
ков р. Гнунвах, где он постепенно затухает. Простирание Канкальского сброса почти меридиональное. ¹

Повидимому, параллельный предыдущему сброс, по которому приведены в контакт третичные туфогенные слои с порфировитами мезозоя, существует между рр. Мейнкакальчу и Цейтант, но это осталось невыясненным.

В южной части о. Карагинского по сбросам видны глыбы мезозойских порфиритов, вмещающих массивы перидотитов, восточный из которых имеет меридиональное, а западный — северо-восточное простирание.

Все перечисленные крупные сбросы постлиоценового времени играют очень крупную роль в общей тектонике и орографии острова. Однако, кроме них, в юго-восточной части острова, южнее устья р. Ильту, почти до м. Краменникова, выступающие в береговых обрывах третичные породы в очень сильной степени пересечены многочисленными, небольшой сравнительно амплитуды сбросами меридионального, северо-западного и северо-восточного простирания. Поэтому определяющим в тектонике третичных слоев этой области является наличие многочисленных сбросов, разбивающих слои практически небольшие глыбы. Наличие этих глыб, смешенных друг относительно друга, совершенно затушевывает последовательность напластования третичных пород этой области, едва дает возможность дат их стратиграфию и увязать таковую со стратиграфией третичных отложений других частей острова, где дизъюнктивные дислокации проявлялись значительно слабее. Морские отложения, покоящиеся на морских террасах плейстоценового времени, не обнаруживают следов пликативных и дизъюнктивных дислокаций.

ИЗВЕРЖЕННЫЕ ПОРОДЫ О. КАРАГИНСКОГО

Среди магматических пород о. Карагинского наибольшим распространением пользуются порфиры и в эфузивной фации, в то время как в интрузивной фации играют доминирующую роль породы перидотитовой магмы — перидотиты, дуниты, ипоксениты и связанные с ними серpentinitы. Сравнительно подчиненное значение имеют кайнотипные эфузивные породы третичного возраста.

I. Интрузивные породы

A. Семейство перидотитов и ипоксенитов

Породы из семейства перидотитов и ипоксенитов, залегающие среди меловых пород, пользуются очень широким развитием на о. Карагинском, где они образуют ряд крупных и мелких массивов. Наиболее крупный массив этих пород расположен в центральной части острова и протягивается сплошной полосой, постепенно суживающейся к северу, от м. Урил, выступающего на восточном берегу острова между устьями рр. Цейтант и Кайконотвами, до северных отрогов горного массива Саконова, расположенного в верховьях рр. Ульту, Кетонто, Пшун и Чегайвам. В южной, наиболее широкой своей части этот массив, который мы будем называть в дальнейшем Центральным, имеет ширину около 4—6 км, а в северной части, в районе массива Саконова, — около 500 м. Горы, сложенные породами этого семейства, обладают очень пологими формами, в большинстве случаев покрыты элювиальными глябовыми россыпями и имеют очень характерную буроватую окраску, благодаря бурым цветом корки ветеринации, характерной для пород семейства перидотитов. Второй крупный массив этих пород расположен в южной части острова, где он залегает

¹ Исследования 1939 г. показывают, что хребты Голенищева, Таныш, Западный представляют собой типичные горсты, а включенные между ними депрессии — грабены.

2 Труды Камчатской экспед., вып. 3
в порфировой мезозойской толще пород и образует с Южную. Северо- западнее м. Крашенинникова породы этого массива выступают в бором осевом обрыве. Ширина этого массива, который в дальнейшем мы будем называть Южным, около 1.5—2 км. Кроме этих двух крупных массивов, в разных частях о. Карагинского встречаются ряд мелких массивов. К таким относится жилообразная залежь (до 100 м шириной) гардбургит-серpentинит хребта Западного, расположенная в верхнем течении р. Гирокетой, левого притока р. Гнунана, массив серpentинитов в долине р. Маркальской и серpentиниты хребта Голенищева. Южнее устья р. Цветная встречаются громадная оползня глиба пиросекита, что дает основание предполагать существование этой группы пород в коренном залегании в этой части острова. Наличие больших количеств залежей серпентинизированных перидотитов в устье р. Мейнкакальку служит основанием предполагать наличие коренных залежей этих пород в хребте Западном, в истоках р. Мейнкакальку.

Главную массу пород в Центральном и Южном перидотитовых массивах представляют перидотиты, среди которых в южной части Центрального массива встречаются полосы синенетического дунита с ширами хромистого железняка.

Пиросекиты залегают в южной части Центрального массива, по западной его окраине, где они образуют большое тело, а также встречаются в виде тонких жилок, сенких перидотитов в Южном массиве. Только в центральных частях южной части Центрального массива, где он имеет максимальную ширину, перидотиты и дуниты почти не подверглись серпентинизации, но в других местах они или сильно серпентинизованы, или полостью превращены в серпентин, что наблюдается в приконтактовых зонах Центрального массива и в небольших телах этих пород, где серпентинизация прошла до конца (гардбургит-серpentинитовая залежь в долинах р. Кемберлей). Очень широкие контактные зоны Центрального массива характеризуются появлением сланцеватых серпентинитов, хлорит-тальк-магнезиальных сланцев, магнезитов, появлением кварц-карбонатных пород, содержащих железисто-охристые глинообразные минералы. Характер пород, развитых в контактных зонах перидотитов, указывает на большую роль гидротермальных процессов с участием СО2, что в конечном ряду метаморфизма кальцитовых пород приводит к образованию карбонатов шелочных земель, кварца и гидроокислов железа.

Для перидотитов Центрального массива характерна первичная полосчатость, выражавшаяся в чередовании полос дунитового состава, часто имеющих несущественную мощность, измеряемую сантиметрами, с полосами перидотита с пиросекитом. Иногда в дунитовых полосах линейно располагаются верши пиросекита и хромита; хромит также образует витиевые со- гласно с общей полосчатостью шлаковые сегрегации от долей сантиметра до 1 м мощностью. Полосчатость перидотитов параллельна простиранию массива перидотитов.

Перидотиты (ларцолиты)

Перидотиты являются наиболее распространенной породой семейства перидотитов и пиросекитов о. Карагинского. В свежем виде они встречаются только в южной части Центрального массива, но в других частях Центрального и в Южном массивах они в значительной степени серпентинизированы.

Микроскопически ларцолиты обладают в свежем изломе темношелевым цветом, псевдоморфозовидной текстурой, обусловленной наличием довольно крупных, с блестящими поверхностями спайностью выделений пиросекита, достигающих 3—4 мм в поперечнике, и бурой корой выветривания, на кото-
рой рельефно выделяются зерна пироксена и хромита. Преобладающим в породе минералом является оливин, образующий неправильные разнообразно окружной формы зерна, по своим размерам не уступающие другим составным частям породы, но разбитые сложной сетью трещинок, заполненных зелёным серпентином, что и является причиной макроскопически наблюдаемой псевдоморфной текстуры этих пород. В шлифе оливин совершенно бесцветен. При более сильных процессах серпентинизации лерролита по оливину развивается петельчатый серпентин с выделением магнетита, оконтуривающего тонкими пластиничками отдельные петли, в центре которых довольно часто остаются реликты свежего оливина.

Пироксеновая составная часть лерролита представлена ромбическими и моноклинным пироксеном.

Ромбический пироксен в породе количественно преобладает над моноклинным пироксеном. Так же как и оливин, ромбический пироксен образует неправильные зерна. В шлифе он бесцветен, лишён плеохроизма, обладает отчетливой спайностью и низким двупреломлением. В некоторых случаях в кристаллах ромбического пироксена наблюдаются правильно оптически ориентированные мелкие линзовидные нереткообразные включения моноклинного пироксена, располагающиеся своей длинной осью параллельно спайности ромбического пироксена и являющиеся, повидимому, продуктами распада твердого раствора. Иногда наблюдается в одном кристалле не одновременное погашение включений моноклинного пироксена, асимиетричное по отношению к плоскости спайности ромбического пироксена. В свежем лерролите ромбический пироксен только в исключительных случаях незначительно подвергается баститизации, но по мере усилении серпентинизации породы ромбический пироксен все больше и больше баститируется до полного замещения баститом. Бесцветный моноклинный пироксен диопсидового ряда количественно в породе занимает очень подчиненное положение, но образует иногда довольно крупные неправильные зерна. Часто в породе моноклинный пироксен ассоциирован с ромбическим пироксеном. При общем процессе серпентинизации породы моноклинный пироксен обнаруживает наибольшую устойчивость по сравнению с оливином и ромбическим пироксеном; в породе, почти на цело серпентинизованной, зерна моноклинного пироксена остаются свежими.

В качестве акцессорного минерала в лерролитах присутствует хромит, также развитый в неправильных зернах. В шлифе он просвечивает густым красно-бурым цветом.

Из вторичных минералов в лерролитах встречаются петельчатый зеленовато-желтовато-желтый серпентин, развивающийся по оливину, бастит, образующий псевдоморфозы по ромбическому пироксену, незначительное количество наблюдаемого в некоторых случаях талька, развивающегося по ромбическому пироксену, в редких случаях наблюдаемый бесцветный тромолит, склонный к радиально-лучистому строению и развивающийся, повидимому, по ромбическому пироксену. Количество серпентина в породе колеблется от незначительного до 40% породы.

Химический анализ свежего лерролита, произведенный В. А. Егоровым, показывает содержание (в %):

<table>
<thead>
<tr>
<th>Минерал</th>
<th>Содержание</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>41.91</td>
</tr>
<tr>
<td>TiO₂</td>
<td>—</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>—</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.38</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.37</td>
</tr>
<tr>
<td>FeO</td>
<td>6.37</td>
</tr>
<tr>
<td>NiO</td>
<td>0.44</td>
</tr>
<tr>
<td>MnO</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO</td>
<td>42.98</td>
</tr>
<tr>
<td>CaO</td>
<td>0.19</td>
</tr>
<tr>
<td>BaO</td>
<td>не опр.</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.08</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.15</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>—</td>
</tr>
<tr>
<td>H₂O</td>
<td>10.10</td>
</tr>
<tr>
<td>П. п. пр.</td>
<td>4.16</td>
</tr>
</tbody>
</table>

109.23
Гарцбургит-серпентиниты

Гарцбургит-серпентиниты образуют жилу длиной около 100 м мощности среди порфиров хребта Западного, в верхнем течении р. Кемберлей, левого притока р. Гунауам. Простирание жилья северо-северо-восточное. В контакте с порфировами здесь развиваются кварц-карбонатные, пропитанные железистыми гидроокислами породы.

Макроскопически гарцбургит-серпентинит представляет собой жилу на ошупь темнозеленую породу с афалитовой темнозеленной основной массой, состоящей из серпентина, на фоам которой выделяются блестящие зерна бастита, имеющие в поперечнике до 0,5 см. Микроскопически основная масса породы состоит из петельчатого серпентина, в центре петель которого располагаются зерна в проходящем свете скопления мельчайших зернышек магнетита. Серпентин включает многочисленные зернышки магнетита и слегка просвечивающего темно-зеленого цветом хромита. Петельчатый серпентин заметен в породе первичный оливин.

Среди петельчатого серпентина располагаются псевдоморфозы бастита по первичному ромбическому пироксену. Насколько можно судить по формам этих псевдоморфов, первичный ромбический пироксен имел ксеноморфное очертания. Бастит почти бесцветный, с еле уловимым зеленоватым оттенком. Спайность тонкая, параллельная. Судя по продуктам замещения первичных минералов, порода состояла из оливина и ромбического пироксена, т. е. представляла собой гарцбургит.

Дуниты

Дуниты не образуют самостоятельных тел, но встречаются в южной части Центрального массива в виде многочисленных полос среди порфиров. В дунитах встречаются шлифы хромистого железняка. Как геологически, так и по минералогическому составу существуют все переходы от порфиров через дуниты, содержащие в исчезающем малом количестве ромбический и моноклинный пироксен, к лишенному пироксенов чистому оливиновому дуниту с акцессорными хромитом. Дуниты обычно встречаются в верхних частях Центрального массива, где менее всего проявлялись серпентинизации, что и является причиной свежести дунита.

Макроскопически дуниты вполне схожи с порфировами, отличаясь от последних отсутствием экранических пироксенов, определяющих порфировую структуру порфиров. Макроскопически дунит кажется мелкозернистым, но при микроскопическом рассмотрении выясняется, что отдельные первичные зерна оливина достигают относительно крупных размеров, только наличие многочисленных трещинок, секущих зерна оливина, определяет макроскопически мелкозернистый габитус породы.

В лишенных пироксенов дуните массу породы составляют неправильные зерна бесцветного оливина, разбитые многочисленными трещинами, по которым развивается желтоватый серпентин. Многие зерна оливина обладают облачным погасанием, а в некоторых из них наблюдаются тонкие параллельные полоски, погасающие неодновременно, как это наблюдается при двойниковом строении. Наличие этих полосок облачного погасания в оливинае, а равно раздробленность зерен свидетельствуют о механической деформации пород при горообразовательных процессах.

Хромит в виде единичных зерен рассеян равномерно в породе. В шлифах хромит просвечивает красно-бурым цветом. Иногда он обладает некоторым плагиоморфизмом. Шлифованные срезы хромита содержат зажатый между рудными зернами серпентин.

Из вторичных минералов в дуните содержится только серпентин в небольшом количестве.
Химический анализ свежего лишенного пироксена дуниты, произведенный В. А. Егоровым, показывает содержание в породе (в %).

<table>
<thead>
<tr>
<th>Состав</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>38.13</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.03</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.68</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.09</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.22</td>
</tr>
<tr>
<td>MnO</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO</td>
<td>46.21</td>
</tr>
<tr>
<td>CaO</td>
<td>—</td>
</tr>
<tr>
<td>Na₂O</td>
<td>—</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.24</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>слеж.</td>
</tr>
<tr>
<td>Na₂O−3Al₂O₃</td>
<td>0.96</td>
</tr>
<tr>
<td>П. п. пр.</td>
<td>5.86</td>
</tr>
<tr>
<td>Сумма</td>
<td>100.30</td>
</tr>
</tbody>
</table>

В пироксенсодержащих дунитах пироксеновая часть представлена ромбическим и моноклинным пироксеном. Ромбический пироксен, развитый в породе в виде неправильных зерен, уступающих по своим размерам зернам оливин, в шпине бесцветен и лишен плексохризма. По краям ромбического пироксена иногда развиваются бастит и тромолит-тальковые агрегаты. Моноклинный пироксен имеет ксеноморфные очертания зерен, в проходящем свете бесцветен или имеет несколько буроватый оттенок. В одном из зерен моноклинного пироксена наблюдаются тонкие пластинчатые включения рудных зерен, располагающиеся строго параллельно между собой и под углом к трещинам спайности пироксена. Эти включения рудного минерала в пироксене являются, повидимому, продуктами распада твердого раствора в результате диагенетических изменений породы. Хромит в породе развит частью в правильных октаэдрических формах, а частью в виде неправильных зерен, включающих небольшие зерна оливина и пироксенов.

Пироксениты

Пироксениты встречены по западной окраине Центрального массива, в носках р. Гушцев, где они образуют довольно большое тело до 200 м мощности. Соотношение их с перidotитами геологически выяснить не удалось. В южном направлении массива пироксениты сменут тонкими (20 см) жилками перidotиты. Южнее устья р. Цветлатир, на берегу моря, встречена огромная сплошная глыба диалахит, что говорит о коренных месторождениях этой породы среди порфиров мезозоя. Пироксениты Центрального массива и массива южнее устья р. Цветлатир представляют собой диалахиты, а пироксениты Южного массива являются вебстетитами.

Диалагиты. Макроскопически это темнозеленые крупнокристаллические породы, в которых отдельные кристаллы пироксена достигают 15 и более сантиметров в длину, но большая часть кристаллов пироксена измеряется от дюймов до нескольких сантиметров в длину. Иногда диалагиты обнаруживают крупнокристаллическое строение. Среди кристаллов пироксена встречаются неправильные небольшие участки черного серpentина; они иногда образуют крупные линзы среди диалагита в несколько метров мощности. В диалагите наблюдается некоторая линейность в расположении кристаллов пироксена, согласная простиранию массива.

Диалаг в меньшей крупнозернистых разностях имеет ксеноморфные очертания. Отдельные кристаллы его обычно несколько удлинены по оси c. В проходящем свете бесцветен, обладает очень тонкой отделенностью, разбивающей кристаллы на тончайшие полоски. По плоскостям отделкости диалага располагаются тончайшие пылевидные включения магнетита, что делает такие кристаллы темно-серыми в проходящем свете при небольших увеличениях. Часто кристаллы диалага содержат в большом количестве включения рудных зерен и серпентина баститового облика. В некоторых случаях кристаллы диалага переполнены включениями, обладаю-
щими расплывчатыми неправильными формами, вторичного тремолита и частью талька.

Серпентин искельчатого строения располагается больными или меньшими участками среди зерен диаплагага. В проходящем свете он окрашен в желтовато-зеленоватый цвет. Обильно переполнен магнетитовой пилью и зернистыми магнетитами. Серпентин в породе развилися на месте первичного оливинита. Первичная порода была олививовым диаплагитом.

Химический анализ диаплагита из верховьев р. Глухая, произведенный В. А. Егоровым, показывает содержание в породе (в %).

SiO₂	49.41	MgO	23.21
TiO₂	0.06	CaO	16.76
Al₂O₃	0.92	BaO	—
Fe₂O₃	1.89	Na₂O	0.05
Cr₂O₃	0.56	K₂O	0.15
FeO	3.63	P₂O₅	0.02
NiO	0.04	H₂O⁻¹¹⁰	0.55
MnO	0.11	П. п. п.	3.10

40.46

Вебстериты. Вебстериты секут тонкими жилами, до 20 см мощности, лепидолиты Южного массива. Макроскопически — среднезернистые массивные темнозеленоватые породы:

Порода состоит из преобладающего в количественном отношении ромбического платикектина, магнезиального платикектина, вторичного серпентина и акцессорных рудных минералов.

Ромбический платикектин ксеноморфен, в проходящем свете бесцветен и лишён плеохроизма. Часто параллельно спайность в нём располагаются тончайшие сильно увлажнённые волосовидные включения моноклинного платикектина, правильно оптически ориентированные, остающиеся незамеченными даже при полном замещении ромбического платикектина баситом. Включения эти следует рассматривать как продукты выделения из твердого раствора. Многие зерна ромбического платикектина частично или полностью замещены баситом.

Моноклинный платикектин двойникового ряда развит в неправильных зернах, расположенных среди кристаллов ромбического платикектина. В небольшой своей части он первичен, но в другой он является минералом вторичным, что подтверждается наличием оболочек моноклинного платикектина, окаймляющих зерна ромбического платикектина. Моноклинный платикектин содержит вкраепленники рудных минералов.

Серпентин представлен баситом, заместившим ромбический платикектин, а другая его часть образует тонкие жилки, секущие породу, где серпентин имеет волокнистое строение, лимонно-желтый цвет и ассоциируется с волокнистым тремолитом.

Змееовики

Мы уже упоминали, что в эндоконтактной зоне массивов периодиты усиливаются серпентинизация пород до полного замещения железисто-магнезиальных силикатов серпентином. В Центральном периодитовом массиве, в его северной части, в районе горных массивов Саконова, периодиты нацело превращены в змееовики, в которых иногда еще сохраняется реликтовая структура первоначального периодита, но в большинстве своем они превращаются в сланцеватые черно-зеленоватые серпентиниты. Такие же сланцеватые серпентиниты встречаются по западному контакту Центрального массива, в верховье р. Талевлы. Под микроскопом они оказываются состоящими из чешуйчатого антигортита, среди которого в виде участков и небольших прожилок развивается тальк. Они содержат довольно много
рудных зерен (хромит), обладающих иногда идиоморфными очертаниями. В этом же районе, на ряду с антиторитовыми сланцами, развиты тальк-хлорит-магнезитовые сланцы, обладающие лепидобластической структурой и состоящие из пластинчатого талька, хлорита, большого количества магnezита в неправильных кучковатых скоплениях и хромита в неправильных зернах.

В. Диориты и кварцевые диориты, микрогаббро

Породы диоритового семейства пользуются сравнительно с породами семьи перидотитов и пиросенитов очень подчиненным развитием. В своем залегании они приурочены к массивам пород перидотитового семейства, где они развиты в виде жил и сравнительно небольших массивов по западной окраине Центрального массива перидотитов. Встречаются жилы этих пород и среди порфиритов мезозоя в местах, достаточно удаленных от массивов перидотита. Там, где они появляются совместно с перидотитами, они оказываются моложе последних и рассекают их жилами. Породы диоритового ряда обычно довольно явно несут на себе гидротермальные изменения, являющиеся результатом автометаморфизма.

По видимому, серпентинизация перидотитов в значительной степени обязана своим происхождением внедрению масс диоритовой магмы.

Среди диоритов различаются пиросеновые и амфиболовые разности. Пиросеновый диорит образует небольшую массу в верховье р. Глунд, по западной окраине Центрального массива перидотитового массива. Это массивная среднезернистая с неправильной угловатой отдельностью порода темноцветного цвета, состоящая из мутного (альбитизированного) плагиоклаза, моноклинного, с субмередиальной двупреломляемой пиросеной, по которому иногда развивается актинолит. Акцессорными являются сфена в неправильных зернах и рудные минералы.

Роговообманковые диориты встречены в жиле среди порфиритов на м. Крашенчинникова, где они в сильной степени претерпевали и сектузы тонкими жилами пренита, а также по западному склону горного массива Свапополь, где они встречены в ядрах структуры совместно с серпентинитами. В последнем случае диорит, несколько более меланократовый, связан постепенными переходами с плагиоклазовыми гориблендитами, в которых плагиоклаз содержится в исчисляемых макром количестве. Структура роговообманкового диорита гиппогоморфно-зернистая. Плагиоклаз сильно плетистован и разложен в новообразованием мелкозернистого скученного эпидота, пояса, пренита; последний также развит в виде тонких жилок. Роговая обманка — в больших неправильных кристаллах, коричнево-зеленая, иногда превращающаяся в радиально-лучистый актинолит. Сфена развивается вокруг зерен титан-магнетита.

Микрогаббро

Порода встречена в мощной жиле среди перидотитов на водоразделе между рр. Кайкоотвана и Апотвана. Макроскопически это мелкозернистая темноцветная порода с различными игольчатыми роговыми обманками. Микроскопически порода оказывается состоящей из преобладающей в количественном отношении роговой обманки, плагиоклаза и акцессорного сфена.

Роговая обманка имеет идиоморфные очертания, уделена по оси с, часто имеет правильные концевые огранения, гранивато-зеленого цвета, с ясными, но не сильным плеохроизмом в зеленных тонах. Обычно она сохраняется в городе свежей, но в некоторых случаях по ней развивается зеленый пепловообразный хлорит.

1 Вернее — габброидиориты и габбро.
Плагиоклазы состава лабрадора имеют обычно косоэллиптические очертания, но некоторые из них довольно правильных очертаний и имеют вид узких лейст. Плагиоклазы полисинтетически двойникованы и часто имеют зональное строение. В некоторых случаях по ним развивается серпинит.

Сфен обычно в небольших зернах, имеющих довольно правильные очертания, по отношению к плагиоклазам в неправильные по отношению к роговой обманке, которая часто включает его неправильные зерна. В породе сравнительно много сфена.

В микрогаббро встречаются скопления делессита. Структурно-текстурные особенности микрогаббро состоят в резко выраженным идиоморфизм роговых обманок.

Химический анализ микрогаббро, произведенный В. А. Егоровым, показывает содержание в породе (в %):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>47.19</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.84</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.04</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.07</td>
</tr>
<tr>
<td>FeO</td>
<td>6.47</td>
</tr>
<tr>
<td>MnO</td>
<td>0.14</td>
</tr>
<tr>
<td>MgO</td>
<td>10.02</td>
</tr>
<tr>
<td>CaO</td>
<td>10.94</td>
</tr>
<tr>
<td>Na₂O</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.88</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.15</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Диагностика: 100.16

Магматическая формула по Ф. Ю. Левинсон-Лессингу:

3.29 R₂O·R₂O₃·4.36 SiO₂; \[\alpha = 1.38; \]

R₂O:RO = 1:12.4.

Кварцевый диорит

Встречено в жиле 7-метровой мощности, секущей порфировит в верховье р. Анакоуыл в хребте Голенищева. Порфировит в контакте с кварцевым диоритом пиритизован. Макроскопически порода светло-серого цвета, массивная. Структура гипидоморфно-зернистая. Преобладающими в количественном отношении минералами являются плагиоклазы, обладающие наибольшим идиоморфизмом по сравнению с другими составными частями породы, полисинтетически двойникованы, сильно пелитизированные и серпенизированные. Серпенизации подверглись главным образом внутренние зоны кристаллов.

Зелёная роговая обманка в неправильных, часто удлинённых зернах. Иногда хлоритизирована.

Довольно много кварца, выполняющего промежутки между плагиоклазами и роговыми обманками. В мелких зернах в породе содержатся сфен и магнезит. Апатит в виде точечных иголочек.

II. Эффузивные породы

Эффузивная вулканическая деятельность в районе о. Карагинского была особенно сильной в мезозойское время, когда в широком масштабе изливались основные лавы, представленные в настоящее время порфировитами. Эти массовые излияния как бы заключили собой седиментационный мезозойский цикл и предшествовали сильной складчатости, смытый мезозойские слои. Однако и в течение седиментационного цикла эпизодически происходили вулканические извержения с излияниями спилитов и диабазовых порфиров.

В юрское время в районе о. Карагинского сильная вулканическая деятельность происходила в нижнемеловое время, когда изливались лавы андезито-базальтового состава и выбрасывалось большое коли-
често обломочного материала. Нижнемиоценовая вулканическая деятельность проявлялась главным образом в юго-восточных районах о. Карагинского. В плиоцене вулканизм проявился во вторжении штока оливинового базальта, сопровождавшегося взрывом в западной части острова, в районе с. Лимпет. В четвертичное время в районе о. Карагинского вулканическая деятельность отсутствовала.

По своим масштабам эфузивная вулканическая деятельность кайнозоя сильно уступала вулканической деятельности мезозоя.

А. Палеоэпииэффузивные породы

Спилиты и диабазовые порфириты

Спилиты и диабазовые порфириты образуют пластовые залежи среди мезозойских осадочных пород свит м. Ровного и м. Промежуточного, мощность которых колеблется от нескольких до 100—150 м, но в некоторых случаях они сходят дайками этих пород.

Для этих пород в большинстве случаев характерна шаровая отделность, в мощных потоках проявляющаяся отчетливо в верхних их частях. Диаметр отдельных шаров достигает 1—1.5 м. Все породы этой группы обладают темноцелым цветом и мелкозернистым сложением.

Спилиты встречаются среди пород свиты м. Ровного, между м. Ровным и бухтой Нафрасой, в долине р. Отярь и в верховье р. Аптаева, среди порфировой группы пород. Это породы офитовой структуры, линзовидные порфировые вкрапленники и состоящие из диагенезита, хлорита и кальцита. Плагиоклазы, развитые в породе в виде гидроморфных удлиненных лейс, альбитизированы, обладают двойниковым строением и количественно преобладают в породе. Хлорит (цемент и часть делисет) имеет ксеноморфные очертания и нацепо, повидимому, заместили собой первичный пороксен или амфибол. Кальцит в виде неправильных зерен переполняет породу, но некоторая его часть сосредотачивается в тонких жилах, секущих породу. Образование кальцита связано с разложением аморфитовой молекулы плагиоклаза. В качестве акцессорных минералов в породе присутствуют довольно большое количество рудные минералы и апатит в виде тонких длинных иглочек.

Диабазовые порфириты встречаются среди пород свиты м. Промежуточного на морском берегу, у устья р. Мейненкаква и в нижней р. Перевальной. Макроскопически они отличаются от спилитов мелкозернистостью и наличием порфировых вкрапленников плагиоклаза. Плагиоклазы в вкрапленниках сильно разложены с новообразованиями кальцита и хлорита, иногда сохраняются свежими и имеют состав лабрадора. Основная масса офитовой или плагиоклазовой структуры состоит из удлиненных лейс и сильно вытянутых микролитов альбитизированного плагиоклаза, среди которых располагаются вторичные карбонаты и хлорит. В качестве акцессорных минералов присутствуют рудные зерна.

Порфириты

Среди порфиритов о. Карагинского микроскопически различаются три разности:

a) плагиоклазовые порфириты, в которых порфировые вкрапленники представлены исключительно плагиоклазом, сильно петлитизированным и карбонатизированным, а андезитовая основная масса состоит из микролитов разложенного плагиоклаза, хлорита, карбонатов и рудных зерен. В них обычны миндалины хлорита и кальцита;

b) авгит-плагиоклазовые порфириты, в которых в качестве порфировых вкрапленников присутствуют авгит и разложенный, большой частью,
плагиоклаз, а основная масса состоит из зерен авгита, микролитов плагиоклаза, хлорита, карбонатов и рудных зерен. Обычны миндалыны карбонатов, часто очень мелкочисленные;
с) авгитовые порфириты, в которых порфировые вкрапленники представлены исключительно авгитом, а основная масса состоит из разложенных плагиоклазов, зерен авгита, хлорита, который довольно часто выполняет мелкие миндалыны и рудных зерен.
В громадной толще порфиритов мезозоя преобладают, повидимому, авгит-плагиоклазовые порфириты.
Для всех этих групп характерны сильный гидротермальный разложчивость с новообразованными хлоритом и карбонатом, что объясняет их темно-зеленую окраску.
В некоторых случаях они секутся жилами кальцита, мощность которых доходит до 1—1.5 м (морской берег южнее устья р. Межикискалья); вокруг жил кальцита порфириты сильно хлоритизированы, деэпитизированы и циритизированы.

В. Кайнозойные эффузивные породы

Базальты и андезито-базальты мыса Тонс

В районе м. Тонс туфогенные третичные отложения сменяются мощными потоками базальтов и андезито-базальтов, которые южнее м. Тонс образуют пластовые заливы среди туфогенных третичных пород, что устанавливает нижнемиоценовый возраст залегания этих пород. В районе м. Тонс получают широкое развитие абрасионные останцы, сложенные андезито-базальтами и базальтами и далеко вдающиеся в море, что говорит, повидимому, о большой существовании в этом районе мощных лавовых накоплений, связанных с наличием существовавшего здесь центра извержений.

Базальты черного цвета, плотные, мелкозернистые, порфировой текстуры породы, обладающие правильной столбчато-призматической отдельностью. Макроскопические различия вкрапленники прозрачного плагиоклаза и черного пироксена.

Плагиоклаз во вкрапленниках представлен основным лабрадором, полисинтетически сдвойникованным и зональным. Вкрапленники плагиоклаза обычно переполнены мелкими включениями зернами авгита, магнезита и расплывчатых включений коричневато-зеленого иллинсита. Плагиоклазы образуют преобладающую массу порфировых вкрапленников. Вкрапленники авгита количественно значительно уступают вкрапленникам плагиоклаза, но по своим размерам они даже превосходят вкрапленники пла-гиоклаза. Авгит иногда включает идиоморфные окалинические кристаллы магнезита.

Среди вкрапленников находятся также идиоморфные кристаллы магнезита и псевдоневровозы иллинсита по идиоморфному первичному оливину, окруженные вентциком мелких зернышек моноклинного пироксена. Интерсертальная основная мелкозернистая масса состоит из микролитов основного плагиоклаза, очень большего количества зерен зернами авгита, мелких идиоморфных кристаллов магнезита и небольших участков коричневого стекла.

Андезито-базальты черного цвета, мелкой параллелинпредельной отдельности, порфирового сложения с афанитовой основной массой.

Вкрапленники в подавляющем большинстве представлены зональным и полисинтетически сдвойникованным основным плагиоклазом и, в меньшем количестве, авгитом и гиперстеном, окруженным вентциком зерен моноклинного пироксена. Обычны вкрапленники магнезита, также окруженные вентциком моноклинного пироксена.
Основная масса трахитовой структуры состоит из прозрачного коричневого кислого стекла, в котором сосредоточены узкие микролиты плагиоклаза, зернышки пироксена и магнетита. Стекловатого базиса в породе много.

Базальты горы Канаалту

В районе горы Канаалту, среди области, занятой туфогенными третичными отложениями, встречаются в больших массах тонкошерватые базальты. В этих базальтах прекрасно выражена волнистость. Выяснить их взаимоотношение с окружающими осадочными породами не удалось. Базальты обладают порфировой структурой с интенсивной основной массой.

Порфировые вкрапленники представлены главным образом основным плагиоклазом, полисинтетически свойникованным, зональным и содержащим часто включения довольно крупных зерен авгита. Вкрапленники авгита редки. Среди вкрапленников находятся своеобразные эпидот-карбонатные псевдоморфозы по первичному оливину, окруженные венчиком зерен авгита.

Основная масса состоит из изометричных и удлиненных микролитов плагиоклаза, мелких призматических кристалликов авгита, большого количества зернышек рудных и некоторого количества стекла. Иногда в основной массе развивается вторичный кальцит, но обычно порода очень свежая.

Базальты сопки Лимимтэ

Среди равнин западной части о. Карагинского, по правому берегу р. Лимитэ, в 3 км от берега моря, резко выделяется с. Лимимтэ, имеющая высоту около 300 м. Вершина части этой сопки образована слоем туфобрекчий, залегающими среди дискрипированных оливиновых пород плиоценовой свиты м. Плоского. На юго-восточном склоне сопки толща оливиновых пород вмещает небольшой шток (бисмайт) базальта, внедрившегося во время отложений вмещающих пород. Внедрение базальта закончилось, повидимому, взрывом, выбросившим слой туфобрекчий, но не сопровождалось излиянием лавы. Диаметр штока — около 75 м. Этот своеобразный вулканический эмбрион достоин того, чтобы его описать более подробно, но в настоящей работе я ограничусь только краткой характеристикой базальта.

Макроскопически базальт представляет собой мелкозернистую черносерого цвета породу, содержащую небольшие мидалинки кальцита.

В состав базальта входит идiomорфный полисинтетически свойникованный свежий основной лабрадор, развитый в породе в довольно крупных кристаллах-вкрапленниках и в более мелких кристаллах, постепенно уменьшающихся в размерах до размеров микролитов.

Также свежим в породе сохраняется авгит, развитый в породе в виде крупных неправильных зерен.

Большое количество первичного оливин, сохранявшегося в очень редких случаях в виде реликтов, замещено тальк-карбонатными агрегатами. Иногда эти агрегаты окружены венчиком крупных зерен пироксена.

Базальт содержит в большом количестве мидалинны карбоната и мелкие мидалинки неправильной формы халцедона.

Химический анализ базальтов, произведенный В. А. Егоровым, показывает содержание в породе (в %).
Магматическая формула по Ф. Ю. Левинсон-Лессингу:

\[3.28 \text{RO} : \text{R}_2\text{O}_3 : 5.63 \text{SiO}_2 ; \quad z = 1.79 ; \]

\[\text{R}_2\text{O} : \text{RO} = 1 : 8.7 . \]

ОЧЕРК ГЕОЛОГИЧЕСКОЙ ИСТОРИИ О. КАРАГИНСКОГО

В геологическом отношении о. Карагинский не представляет собой самостоятельного целого, а является частью обширного района, примыкающего к п-ову Камчатке; следовательно, в своем историко-геологическом развитии он теснейшим образом связан с Камчаткой. Геологическая история Камчатки может быть с тем или другим успехом прослежена со времени докембрия или палеозоя, так как в центральных ее частях нам известны метаморфизованные докембрийские или палеозойские осадки, представленные парагнейсами, слюдяными сланцами, амфиболитами, филллитами и некоторыми другими кристаллическими сланцами. Сланцы эти вмещают интрузии нормальных калищат-платиклазовых слюдяных гранитов, некото-рая часть которых представляет, повидимому, продукт кристаллизации анатектических магм. Это может быть оправдано наличием сильной мигматизации гнейсов и характером необычайной перемешанности магматического и гнейсового материала, так что не представляет возможно их разделить даже при детальном картировании. На о. Карагинском породы докембрийского или палеозойского возраста, могущие отвечать таковым Центральной Камчатки, совершенно отсутствуют, и его геологическая история становится до некоторой степени ясной только со времени нижнего мела, осадки которого являются древнейшими образованиями о. Карагинского. Но и дальнейшая геологическая история острова остается недостаточно палеонтологически документированной, так как мезозойские осадки его почти лишены палеонтологических остатков.

В нижнемеловое время мы застаем район о. Карагинского в стадии гео-синклинали, характеризующейся отрицательным движением земной коры, которое сопровождалось накоплением мощных осадочных толщ морского происхождения, а также подводными изливаниями основной магмы, и при-ведо к образованию пластовых залежей сланцев и диабазовых порфритов среди нормальноосадочных пород. В этот период, охватывающий время образования свит м. Ровного и м. Промежуточного, отлагаются кремнистые породы, содержащие радиоларии, черные глинистые сланцы и темносерые песчаники, причем кремнистые породы приурочены исключительно к более древним осадкам свиты м. Ровного.

В верхнемеловое время район о. Карагинского становится аренией силь-ного проявления вулканизма, сопровождающегося накоплением мощных толщ кластического и лавового вулканогенного материала, входящих в вы-деленную нами порфiritовую святву, в составе которой — мощные покровы и потоки авитовых порфритов, их туфов и туфобрекчий. Подчиненную роль играют нормальноосадочные слои песчаников и глинистых сланцев, содержащих представителей рода Dentaliidae; эти слои выделены нами под названием слоев Цветятарь.

Массовые излияния порфритов предшествовали крупной орогенической фазе, дислоцировавшей меловые слои о. Карагинского с образованием
складчатых структур северо-восточного направления, и сопровождали интрузивным вулканизмом. В первую фазу интрузивного вулканизма впредьлась в мезовойские толщи перidotитовая магма, образовавшая ряд масс-
сынов, вынутых в северо-восточном направлении. Отсутствие геологических
и минералогических переходов от перidotитов к другим известночным по-
родам, т. е. наличие совершенно самостоятельных перidotитовых тел,
прорывавших меловые образования, с определенностью указывает на
самостоятельно существовавший магматический расплав перidotитового
состава. Являясь ли этот перidotитовый расплав происходящим в ре-
зультате магматической дифференциации основной магмы, массовое из-
лияние которой предшествовало внедрению перidotитового расплава,
или он представлял собою совершенно самостоятельную первичную
перidotитовую магму — говорить об этом можно только предположи-
тельно, так как решение этого вопроса стоит за пределами возможных
наблюдений.

В последующую фазу интрузивного вулканизма следовало внедрение
магматических масс диоритового, вернее — гранодиоритового, состава,
если не ограничиваться только рассмотрением о. Керагинского, но привлечь
данные геологии п-ова Камчатки; на Камчатке широким распространением
пользуются гранодиориты и кварцевые диориты, диориты же имеют очень
подчиненное значение.

Время орогенетической фазы, дислоцировавшей меловые образования
о. Керагинского и п-ова Камчатки, определяется несогласным налеганием олигоценовых слоев на дислоцированные верхнемеловые. По всей вероят-
ности, на Камчатке главной фазой альпийского орогенеза была ларамий-
ская фаза.

До начала отложения олигоценовых оканских слоев и туфоргенной свиты
геологическая история о. Керагинского остаётся неясной; повидимому,
орогенез привёл к образованию здесь суши, затопленной в верхнем оли-
гоцене морем. Таким образом, в верхнем олигоцене и нижнем миоцене район
о. Керагинского испытывал погружение, сопровождавшееся трансгрессией
моря, которая в западной Камчатке, повидимому, наступила уже в нижнем
плиоцене. Это олигоценовое погружение области о. Керагинского сопро-
вождалось вулканизмом в эфузивной форме. Вулканы этого времени носили
характер центральных вулканов и были расположены в районе м. Тонс
на восточном побережье и в районе с. Канаклу в Канкальской депрессии.

Именно в этих районах развиты олигоцен-миоценовые туфобрекции и туфо-
конгломераты, переслаивающиеся с потоками андезито-базальтов и ба-
зальтов.

Спокойное погружение области продолжалось в течение всего миоцена,
во время которого отлагались сравнительно мелководные, главным образом
песчанистые, отложения свит песчаников с Laternula beshoensis и песчо-
цветной. На границе миоцен Г плиоцен в отложения песчано-глинистой
свиты миоценовые слои плиниево дислоцируются с образованием структур
северо-восточного простирания. Эта складчатая фаза охватила не только
район о. Керагинского, но прониклась и в западной Камчатке. Плешаков
(1938) выделяет для западной Камчатки алеутскую фазу складчатости,
проявившуюся, по его мнению, между средним и верхним миоценом. Далее
он указывает, что в основании каврашской свиты развиты вулканические кон-
гломераты, мощностью до 400 м и больше, что указывает на деформацию,
происходившие перед отложением каврашской свиты. Согласно Солодке
(1938), возраст нижнего отдела каврашской свиты определяется нижне-
и среднеплиоценовым, и, следовательно, алеутская фаза проявила не ме-
жду средним и верхним миоценом, как это утверждает Плешаков, а именно
на границе миоцен Г плиоцен, т. е. одновременно с миоцен-плиоценовой
складчатостью о. Керагинского. Морские отложения нижнего плиоцен на-
чаются отложениями грубых песчаников с гальками миоцено- палеогеновых андезито-базальтов, выделяемыми нами в стратиграфическом очерке в отдельную свиту, носящую названную песчаников с Mya karaginskiensis. Песчаники содержат, кроме раковин морских моллюсков, также обуглившиеся древесные остатки, что с общим грубозернистым характером этих осадков указывает на прибрежный характер условий их отложения.

В среднем плиоцене фашиальные условия изменились, и песчанистые отложения сменяются отложениями опоковых пород свиты м. Плоского, что обусловлено некоторым обширным движением обрала. Если миоценовое погружение сопровождалось относительно сильным вулканизмом в районе о. Карагинского, то плиоценовое погружение сопровождалось только мелким сбросам опоковых турфов и туфобрикетов с одно-
временным внедрением в опоковые слои бисмалита оливинового базальта с. Лимита.

Отложение свиты м. Плоского заключалось новыми движениями в районе о. Карагинского, о которых определенно говорить трудно; однако они были обусловлены резкой сменой морского режима, приведшей к отложениям грубообломочных пород свиты Анотавцина. В песчаниках и конгломератах этой свиты содержатся раковины морских моллюсков, кости китообразных и древесные растительные остатки.

Плешанов в цитированной выше работе указывает на углубление в свиты плиоцена западной Камчатки и выделяет самостоятельную плюоценовую фазу складчатости, названную им татарской фазой. Как видим, материалы наших наблюдений на о. Карагинском подтверждают наличие движений в верхнем плиоцене в Камчатской области. В течение верхнего плиоцена удерживается морской режим в районе о. Карагинского. После отложения грубообломочных пород свиты Анотавцина отлагаются тонкозернистые песчаные осадки свиты Лимити и слоев бушт у Ложных Вестей; последние, возможно, отлагались в плеистоценовое время, как и нижнеплеистоценно-ангтским антропические пески. Таким образом, можно видеть, что в верхнем плиоцена район о. Карагинского вновь испытывал обширные движения, которые занялись плеистоценовой фазой складчатости, обусловившей деформацию верхнего плиоцена, слоев бушт у Ложных Вестей и нижнеплеистоценных песков.

Следует отметить тот факт, что в западной Камчатке самые верхние горизонты плиоцена представлены континентальными грубообломочными породами, содержащими лицы бурого угля, в то время как на о. Карагинском морской режим удерживался в течение всего плиоцена.

С плеистоценовой фазой складчатости одновременно являются крупные дизъюнктивные дислокации, развились мезозойский консолидированный фундамент на ряд глуб. Повидному, эта фаза сопровождалась крупными поднятиями, которое выявило большую часть Камчатки из-под уровня моря. В этот период раний плеистоцена, следует думать, о. Карагинский соединялся сушей с Камчаткой, а также позднейшее огисание суш к архипелагу его от Камчатки пронизом.

Плейстоценовое опускание охватило не только о. Карагинский, но и Камчатку, на морских побережьях которой повсеместно наблюдаются морские террасы. На о. Карагинском найвысшей морской террасой является терраса в 300—350 м абс. выс. Двух (1936) указывает для п. Камчатского миса морскую террасу высотою 500 м. Трудно сказать, было ли в действительности такое грандиозное опускание области или следы плеистоценовой морской трансгрессии вследствие неравномерного тектонического поднятия отдельных глуб был приподнят в отдельных случаях на очень большую высоту. В Южной Аляске, как указывает Сакс (1937), морской плеистоцен вследствие интенсивного развития тектонических процессов подвергся крупным вертикальным перемещениям, иногда приподнят на
сотни метров, собран в складки и перебит сбросами. Так, на горе Сент-Эннас Д. Руссел и А. Маддред нашли морской плейстоцен с фауной и ледниковыми валунами на высоте 600—1500 м. Эти факты свидетельствуют о крупных глубоких поднятиях, при которых отдельные глубины испытали несколько большие поднятия, чем целые большие области. К глубам, испытавшим большие поднятия, следует отнести п-ов Камчатского мыса и о. Карагинский, так как в других частях Камчатки следов аналогичных поднятий не обнаруживается, но повсеместно наблюдаются морские террасы с меньшим превышением над уровнем современного моря. Плейстоценовая трансгрессия моря привела к отделению о. Карагинского от Камчатки. Сам остров в это время не имел современных очертаний, а состоял из группы отдельных небольших островов. Так, южная часть острова с сопками Спогур и Южной была присоединена к северной его части только по временному отступанию моря после формирования 50-метровой террасы. Надо сказать, что и очертания Камчатки также были совершенно другие; западная ее часть главным образом находилась под уровнем моря, а п-ов Камчатского мыса представлял собой остров, отделенный от Камчатки проливом, располагавшимся по линии: залив Озерной — Неручье озеро — залив Карагинский. Только ряд последовательных поднятий, отмеченных в настоящем существовании морских террас, и постоянно действующая морская абразионная и аккумулятивная деятельность привели к современной форме острова.

В плейстоцене о. Карагинский подвергся локальному оледенению, охватывшему только наиболее возвышенные части острова, расположенные у горного массива Саконоваль. Оледенение носило горно-долинный характер. Ледники, вытекая из ледниковых цирков, спускались в долины и доходили до подножий хребта, где складывали морененный материал в виде гряд конечных морен, наблюдаясь в настоящее время у западных подножий массива Саконоваль. По времени оледенение о. Карагинского, по всей вероятности, совпадало с позднеплейстоценским оледенением Северной Америки.

В настоящее время о. Карагинский, вероятнее всего, продолжает подниматься, но темпы этого поднятия очень малы, что приводит к преобладанию морской абразии в формообразовании морского побережья. Аккумулятивная деятельность моря проявляется главным образом на западных берегах острова, где ею создана морская коса бухты Ложных Вестей и сформированные намывные прибрежные низменности у устья р. Гнутва, и на западе южного полуострова — у м. Лекало.

В плейстоцене и в настоящее время о. Карагинский подвергался и подвержен интенсивному эрозионному расчленению.

* * *

В заключение автор считает своим долгом отметить большую помощь, оказанную научным руководителем Камчатской экспедиции, ныне покойным акад. Ф. Ю. Левицон-Лессингом, по инициативе которого был организован геологический отряд о. Карагинского, а также выразить благодарность члену-корр. АН Д. С. Белянкину, Л. В. Крепитовичу, А. П. Ильиной и проф. П. А. Православлеву.

ЛИТЕРАТУРА

Двали М. Ф. К появлению геологического строения восточного побережья полуострова Камчатки. — Тр. НГРИ, сер. А, в. 72, 1936.
Дьяков Б. Ф. О меловых отложениях п-ва Камчатки. — Проблемы советской геологии, т. IV, № 12, 1932.
Дьяков Б. Ф. Геологические исследования на западном берегу п-ва Камчатки. Титильский район. — Тр. НГРИ, сер. А, в. 83, 1936.
Дали Р. О. Известственные породы и глубины земли. — ОНТИ, 1936.
Машковцев С. Ф. и Чурин Н. В. Материалы к геологии и петрографии Северной Камчатки. — Тр. Гл. геол.-разв. упр., в. 59, 1931.
Плаханов И. В. Алпийская складчатость в Сахалино-Камчатской области.— Сов. геология, № 6, 1938.
Сакс В. Н. К четвертичной истории Аляски. — Арктика, № 5, 1937.
Солодкевич В. С. Стратиграфия и фауна третичных отложений западного побережья Камчатки, ч. 1, 1936.
Солодкевич В. С. Третичные пеленгоподы Дальнего Востока, т. 1, 1938.
А. В. Щербаков

МАРШРУТНЫЕ ГЕОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ В КАРАГИНСКОМ РАЙОНЕ НА КАМЧАТКЕ

ВВЕДЕНИЕ

В состав Камчатской экспедиции СОПС АН в 1937 г. входило три геологических отряда — Северный, Южный и Быстрицкий. В настоящем очерке изложены результаты работ Северного геологического отряда.

Летом 1937 г. отряду предстояло сделать геологические маршрутные пересечения северной части Камчатки по рр. Дранке, Панкаре и Карате. Эти пересечения следовало сделать с тем же расчетом, чтобы на западе сомкнуться с районом работ экспедиции Нефтегазового института, охватившей в предыдущие годы своими исследованиями большую часть западного побережья.

Этот объем работ отрядом значительно перевыполнен. Перевыполнение плана было достигнуто за счет того, что силами отряда, помимо работ на самом полуострове, произведены работы на о. Карагинском. Туда с самого начала работ были откомандированы Д. С. Харкевич и топограф В. Д. Троцкий.

Так как Харкевич работал совершенно самостоятельно и добывал свои материалы, представляющие большой интерес, результаты этих работ изложены Харкевичем в отдельной статье. Поэтому ниже будут изложены результаты работ отряда лишь на самом полуострове.

РАБОТЫ ОТРЕДА

Работы отряда начались маршрутом по побережью от сел. Карагу к сел. Иваши. Из Иваши маршрут был проложен вверх по р. Панкаре, с переломом через Срединный хребет в р. Палану, по которой не дошли до Паланского озера около 8—10 км. От истоков р. Паланы был произведен перелом в истоки р. Лесовской, а отсюда — к истокам р. Дранки. Ниже по р. Дранке мы спустились несколько ниже впадения в последнюю р. Поперечной и по р. Поперечной перевалили в р. Зимницу. Удалившись сразу же в юго-восточном направлении от р. Зимной, вышли на р. Карагу у сопки Валям-тыгир. Отсюда был сделан маршрут вверх по р. Левой Караге, а затем по р. Правой Караге, причем в первом случае до перевала через Срединный хребет мы не дошли около 10—12 км, а во втором случае вышли маршрутом на самой перевал. Возвратившись с перевала к с. Валям-тыгир, спустились отсюда вниз по реке и 25 сентября возвратились в сел. Карагу.

Всего за время полевых работ на полуострове было проделано 600 км работных маршрутов и зафиксировано 184 обнаружения горных пород.

1 Руководитель отряда А. В. Щербаков, его помощники: научный сотрудник Д. С. Харкевич и топографы А. С. Ивахов и В. Д. Троцкий. 2 Местные жители дают названия «левая» или «правая», глядя вверх по течению реки. 3 Труды Камчатской эксп., вып. 3
ПРЕДШЕСТВУЮЩИЕ ИССЛЕДОВАНИЯ

Из первых исследователей Камчатки ни Эрман, ни Дитмар не были в исследованной нами части полуострова.

Не был в этой части полуострова также и К. И. Боддопович (Boddenowitsch, 1904), работавший на Камчатке в 1897—1898 гг.; однако, его работа «Геологический очерк Камчатки», изданная на немецком языке, дает очень важные ориентирующие указания, относящиеся к геологическому строению полуострова; поэтому и дальнейшим изложением по отдельным вопросам геологии полуострова мы будем возвращаться к этой работе.

В 1907—1909 гг. на Камчатке работала Комплексная экспедиция, организованная Рабунским. Один из участников этой экспедиции, геолог Е. В. Круг, прошел вверх по р. Панкаре: он не оставил в литературе никаких сведений по своему маршруту.

Имеются также сведения [у М. Ф. Двали (1936)], что ник. Панкаре прошел восточным берегом полуострова от Усть-Камчатка до бухты Корфа, охватив таким образом, и часть интересующего нас побережья; никаких материалов по этому маршруту также не опубликовано.

Начиная с 1980 г., на Камчатке ежегодно производит работы Камчатская экспедиция Нефтяного геолого-разведочного института (НГРИ). Участник этой экспедиции М. Ф. Двали зимой 1931/1932 г. для выяснения третичных отложений, интересных в нефтеносном отношении, прошел рекогносцировочное обследование восточного побережья между сел. Еловой и сел. Карагой (Двали, 1936), а летом 1932 г. более детально исследовал Паланский район на западном берегу (Двали, 1932).

В интересующей нас части восточного побережья своими рекогносцировочными исследованиями Двали охватил береговую полосу до 20 км шириной, от р. Панкары до р. Карати, а также пропел маршрутами вверх по этим рекам, дойдя по р. Панкаре несколько выше термальных ключей, а по р. Левой Карага — до перевала через Срединный хребет. Наши работами 1937 г. маршруты Двали полностью перекрыты. На западном побережье Двали прошел маршрут по всем рекам Паланского района, охватив западный склон Срединного хребта почти до водораздела.

Работами 1937 г. мы сопоставились с Двали по рр. Палане и Оветкотане (правый приток р. Леносовской).

П. Т. Новограбенов, частью на основании личных наблюдений (1930), а главным образом по сведениям от местного населения, приводит некоторые данные об имеющихся в районе минеральных источниках, но без учета геологической обстановки их выходов (Новограбенов, 1932). Позже Б. И. Пийн (1937) по данным Новограбенова и главным образом Двали дает краткое описание источников, причем некоторые из них описывает с учетом геологической обстановки их выхода и приводит для них химические анализы.

За время, истекшее с 1932 г., никаких работ в описываемом районе не производилось. Таким образом, материалами для настоящего очерка послужили наши маршрутные исследования 1937 г., а также рекогносцировочные исследования Двали зимой 1931/1932 г. и частично его летние работы 1932 г.

ОРОГРАФИЯ И ГЕОМОРФОЛОГИЯ РАЙОНА

В орографическом отношении описываемый район резко делится на две зоны. Большая западная часть исследованного пространства представляет собой зону Срединного хребта, а к востoku от нее располагается сравнительно узкая наклонная зона прибрежной низменности.
Нами исследованиями целиком был захвачен лишь восточный склон хребта и в незначительной степени — его западный склон. Водораздел хребта имеет северо-северо-восточное направление и отстоит от берега моря в 90 км по р. Карате и в 65 км по р. Панкаре. Здесь, в центральной части хребта, в пределах описываемого района, абсолютные высоты едва превышают 1000 м. Перевалы через хребет, как и вокруг на Камчатке, выполнены бывшими ледниками и по сравнению с более южными, исследованными нами в предыдущие годы, являются сравнительно низкими.

Здесь, в прибрежной части хребта, сосредоточены признаки бывшего оледенения в виде мертвых ледяных цирков, ледниковых цирков и трогоплоских долин. В течение всего лета во многих местах здесь сохраняются белые пятна снега, не успевающего стаять за лето.

Рельеф восточного склона хребта является очень своеобразным. Начиная от водораздела, орографически выраженного цепью скалистых вершин, восточный склон хребта полого, под углом от 6 до 10°, одним ровным склоном снискается до самого моря. В осевых притоках рек этот склон, за редкими исключениями, либо изменен на отдельные яйлы, озера, болота, или же отдельные породы, имеющие в средней части течения главных рек от 300 до 400 м от м. выс. над уровнем моря.

Такой пологий и плоский склон хребта обусловлен наличием здесь разнечетвертичного покровного эфузивного комплекса, покрывающего, как плато, все более древние осадочные, метаморфические и магматические образования, обнаруживающие лишь на дне долин и в нижней части их склонов. Покровному эфузивному комплексу принадлежит, таким образом, главная роль в устройстве современной поверхности описываемой части Камчатки.

Эфузивы в верхней части склонов долин имеют высокие отвесные стенособразные обрывы с прекрасной картиной напластования отдельных потоков. Судя по тому, что южно на восточном склоне хребта потоки падают к востоку под углом в 6—10°, надо полагать, что излияния этих четвертичных (доледниковых) лав происходили не на выровненном — нефилилитованной поверхности. Эфузивы являются доледниковыми, так как они часть изъедены ледниками карами.

В некоторых местах отдельные поверхности, образовавшиеся в результате расчленения эфузивного покровного комплекса, очень похожи на вулканы. Особенно наглядной в этом отношении является с. Валыкытыр, находящаяся при слиянии рр. Левой и Правой Караты. Но горизонтальное напластование отдельных покровов на склонах этих высот уничтожает ложное впечатление о наличии в описываемом районе вулканов.

Такое же строение, как и описанный выше восточный склон, имеет и западный склон хребта в верховьях р. Паданы.

Другое устройство поверхности имеет западный склон хребта в истоках р. Оветкоты: сюда, на западный склон хребта, излияний эфузивов не происходило, и горы (абс. выс. до 900—1000 м) у перевала сложены древними (палеозойскими) амфиболитами и сланцами и поэтому имеют плавные и слаженные очертания; в некотором удалении от перевала горы сложены более молодыми (мезозойскими) туфогенными отложениями и имеют зубчатые вершины и гребни.

Таково строение поверхности Срединного хребта в рассматриваемом районе. Что же касается внутреннего строения хребта, то еще работами прежних лет мы высказали, что он является складчатым сооружением и имеет антиклинальное строение. Работами 1937 г. это также подтверждается.

Следовательно, на выровненную в начале четвертичного периода поверхность страны, имеющей внутреннее антиклинальное строение, происходили излияния эфузивов. Так как покровный комплекс эфузивов очень обши-
рек (занимает всю северную часть Срединного хребта, начинаясь на юге несколькосевернее истоков р. Пип), то и площадь впервые обнаруженной поверхности была громада, а это значит, что эта поверхность была плоской по отноше-

нию к уровню моря. С начала четвертичного периода произошли значительные поднятия. Так, Двайг (1936) сообщает, что на восточном склоне реки, в истоке р. Левой Карата, ключей ущельевых верхнетретичных или постплиоцено-вых склонов в горизонтальных залежнях наблюдался на высоте 400—450 м над ур. моря, а на западном склоне хребта, в долине р. Оветкотын, на плоской поверхности междуречья речек, имеющего относительную высоту до 500 м над рекой, наблюдались россыпи крупного галечника.

В сторону прибрежной низменности восточный склон хребта обрывается крутым уступом до 150 м от ур. выс. Ширина низменности в северной части района достигает 20 км, а в южной сужается до 10 км. Широкими языками она протягивается в западном направлении по долинам рек. В поперечном направлении низменность слегка падает к морю. В продольном направле-

нии она представляет собой чередование низменных участков, примыкаю-

щих к рекам, и широких низовых междуречных отрогов, полого подни-

мающихся к подошве Срединного хребта. Эти отроги к морю обрывается низовыми, до 10—12 м высотой, обрывами, которые поднимают морем. Низменные же участки или являются заболоченными (р. Дранка) или пред-

ставляют лиманы (рр. Панкра, Камы), или же являются бухтой (Кара-

тинская бухта).

Поверхности междуречных отрогов представляют собой множество рас-

сечений в беспорядке бугров и впадин разнообразной величины — от нескольких метров до нескольких десятков метров высотой или глубиной и несколько больших размеров в поперечнике; впадины часто закрыты озерами и озерками с различным уровнем воды в них. Часто эти озёра вытянуты цепочкой. Такой рельеф часто встречается и в долинах главных рек.

Подобный рельеф в предыдущие годы мы неоднократно встречали в долинам рек западного склона хребта (особенно широким развитием он пользуется в долине р. Камчатки) и относили его к ледниковому лан-

дшафту, образовавшему поддомными моренами и отложениями подледнико-

вых вод.

Долины рр. Карата, Дранка и Панкра орентированы в общем в направле-

нии, почти перпендикулярном к простиранию хребта. В нижнем течении рек текут очень медленно и имеют широкие долины с широким плоским днищем. Так, ширина долины, наибольшей в исследованном районе р. Карата, при выходе ее на прибрежную равнину равна 5—7 км.

Верхние части течения рек являются сильно укороченными. Здесь они являются типичными горными реками с быстрым течением и с плохих разработанными долинами. Реки здесь имеют водопады, узкие щелевобразные пропилы более древних террас.

Поперечный профиль речных долин приближается к короткообразному, так как в четвертичное время они были затянуты ледниками. Но за время, истекшее после оледенения, реки в своем верхнем течении углубили днища долин. Поэтому тальвег их в случае массивных крепких пород имеют в нижней части долины яйцевидообразную форму с крутыми или отвесными стенками до 30 м высоты или в случае трещиноватых или более мягких пород — U-образную форму.

Описанные формы продольного и поперечного сечения долин и в особенности наличие водопадов и пропилов свидетельствуют о поднятии области их истоков.

Террасы, которые мы наблюдали в долинах, имеют следующие высоты над уровнем воды в реке:
Пойма 0.5 м
I — надпойменная 2 » встречаются редко
II » 4 »
III » 6 »
IV » 10—12 »
V » 15 »
VI » 20—25 » встречаются редко
VII » 30 » в виде образцов

Из них 10—12-метровая, а также 30-метровая террасы на своей поверхности несут описанный выше ледниковый рельеф без систем расположенных бугров и наносов. Наличие подобного рельефа, приуроченного к двум уровням, мы на основании уже проделывающих работ связывали с двумя определениями Камчатки (Щербаков, 1938).

Наблюдения над речными террасами и в большей степени ландшафты Давли (1932), показывают, что с начала постилопена страна была значительно приподнята. Из описания прибрежной низменности, у которой пишемые участки чередуются с пониженными междуречными отрогами, видно, что еще в недавнее время береговая линия была расчлененной, а настоящее время берег является нарушением. Вдоль этого берега проходит современный штормовой вал, за которым располагаются больших или меньших размеров озер озерного происхождения. Этот штормовой вал заставляет р. Драшу в приусадебной ее части отклониться к северу. В общем характер описываемой части берега во всем похож на западный берег Камчатки от р. Пряхия до р. Воровской, описанный нами в предыдущих работах (Щербаков, 1938). Наличие как там, так и тут выровненного берега, наличие современного штормового вала, частично перекрывающего расположенное за ним образования прибрежной низменности, наличие расположенных за штормовым валом реликтовых озер и окончание прирусловых частей рек, когда они некоторое расстояние перед входением в море прерывают вдоль штормового вала, а также отступание разываемых береговых обрывов междуречных отрогов, мы объясняем тем, что в настоящее время имеет место положительное движение береговой линии или наступление моря на сушу.

Вследствие наступления моря штормовой вал постоянно обновляется и, подпирая прирусловые части рек, заставляет их отклоняться, а береговые обрывы междуречных отрогов поднимаются и отступают внутрь страны.

ОТРАТИГРАФИЯ

Из всех коренных образований лишь возраст третичных образований, охарактеризованных фаунистически, нами определен с большей или меньшей степенью достоверности; возраст же всех остальных образований мы определяем условно на основании геологических соображений и петрографических особенностей, а также по аналогии с другими районами Камчатки, изученными нами или другими лицами в предшествующие годы.

Палеозой (?)

Породы, отнесенные нами условно к палеозою, развиты на перевале из р. Правой Карати в исток р. Овтютаги. Преобладающее развитие здесь имеют туфогенные сланцы. Лишь в виде отдельных обнажений среди туфогенных сланцев встречены амфиболит и кварцевый роговик.

Туфогенные сланцы. Макроскопически это очень тонкосернистые, обычно сильно плоскагни, серо-зеленые или коричневато-серые породы. Часто они рассечены в разных направлениях тонкими трещинами, выполненными кварцем или карбонатом.
Под микроскопом сланцы состоят из очень тонкозернистой, сильно разложеной и сильно карбонатизированной и окисленной массы. Иногда видно, что эта масса состоит из карбонатно-кварцевого агрегата. В этой массе рассеяны порфировые зерна полевых шпатов и кварца, встречаются участки с сохранившимися реликтами порфировой структуры, напоминающие обломки эффузивов. Кое-где рассеяны зернышки пироксенов и роговой обманки. В шлифах видно также, что породы разбиты серней кварцевых или карбонатных жилок, а в некоторых случаях наблюдается прожилки антигольца и гидроксилов железа.

Однотипной чертой сланцев этой группы является то, что они по сравнению с сланцами более позднего возраста (мезозойскими) подверглись сильному катахлазическому метаморфизму, а частично (в некоторых случаях) пирометаморфизм. Сланцы этой группы возникли из сланцев или туфов, т. е. из мягких пород, с образованием только небольшого числа новых минералов. В некоторых случаях более устойчивые минералы (например, порфировые полевые шпаты) или обломки пород менее истиранны. Они выделяются в виде псевдопорфировых вкраеплений среди глюбого материала с истиранными мягкими составными частичами и дают порфирокластическую структуру. В шлифах из этих сланцев видна плойчатость и раздробленность порфиробластовых вкраеплений.

Описанные явления совершенно не наблюдаются в мезозойских или третичных сланцах, в которых пирометаморфизм не сказался, а катахлаз наблюдался лишь в одном случае.

Вторая группа палеозойских пород менее многочисленна и представлена амфиболитами и роговиковыми сланцами.

Амфиболиты. Макроскопически это тонкозернистая, серо-зеленая, очень крепкая, осколочная порода.

Микроскопически амфиболит состоит главным образом из роговой обманки и известково-натрового полевого шпата, реже — амфибита и диаплагиоза как заместителя роговой обманки. В виде примеси распространен: апатит, в округлых зернах или призматических кристаллах, титановый железняк, магнетит (реже) и рутил; очень редко встречается ортоклаз. В виде амфибола и роговых обманок встречаются эпидот и пироксен, реже, вторичный кальцит. Тонкозернистые составные части амфиболита в шлифе расположены в беспорядке, иногда до мицелитообразного проявлений различных частей, что видно на примере роговой обманки и плаегокла.

Кварцевый роговик. Порода с ярко выраженной роговиковидной структурой, на 70% состоящая из кварцевых зерен. Кварц очень чистый и нерастворенный, лишь очень редко встречаются буроватые окисленные части. Подчиненное значение имеет пироклаз с двойниками. Кварц и пироклаз имеют полигональные окраски с бросающимися в глаза прямоугольными контурами. В виде вторичных минералов в породе встречаются ксеноморфные кордиерит и андалузит.

Мезозой — нижний палеоцен

Породы, отнесенные нами сюда, развиты в верховьях всех главных рек, по которым мы прошли маршрутами. Обнаружены они исключительно лишь на склонах речных долин, и притом в нижних их частях, так как сверху эти породы прикрыты комплексом эфузивных четвертичных образований.

Двали выделяет эту толщу пород, называя ее свитой Щековского хребта. Большой возрастной диапазон этой толщи обусловлен тем, что она, будучи в общем очень однородной, с литологической стороны является аналогом многих других толщ и свит на Камчатке, имеющих широкое распро
страчение, причем в некоторых из этих свит найдена верхнемеловая фауна [в Паланском районе — в низах туфогенной свиты (Даали, 1932)], а другие, не охарактеризованные палеонтологически, залегают под песчано-глинистыми сланцами, имеющими олигоценовый возраст (в Тигилском районе), или же, наконец, являются аналогами и третичных образований (богачевская свита).

Обращает на себя внимание преобладающее развитие в описываемой толще туфогенных пород и порфиров. Песчаники, песчано-глинистые сланцы и глинистые сланцы терригенного происхождения были встречены здесь лишь в единичных обнажениях. Среди туфогенных пород преобладающим значением имеют туфобреуччи и туфы порфиров, а также туфопесчаники. Значительно реже встречаются кристаллические туфы и, в единичных обнажениях, туфогенные сланцы.

Пищ ны между краткое описание всех этих образований.

Порфриты. Это главным образом темные, с различными зеленоватыми оттенками породы. В сравнительно редких случаях макроскопически хорошо заметно порфировидное строение этих пород.

Под микроскопом в большинстве случаев нет возможности распознать материнскую породу, и лишь в редких случаях по сохранившимся реликтам первоначальной структуры можно выделить порфириты андезитовые или порфириты базальтовые. Андезитовые и базальтовые порфиры, в отличие от остальных, не имеют и зеленоватых оттенков и являются или темно-серыми, или темными лиловато-бурыми.

В верхнем течении р. Левой Цари (наибов стан доков по этой реке), на левом ее берегу, кроме того, мы наблюдали большие осыпи почти белых, с бурыми пятнами и разводами, порфиров, оказавшихся сильно алунитированными и окременными.

Разновидности описываемых палеотипных эффузивов представляют собой породы, потеряющие первичные структурные признаки, и сложены преобладающими вторичными минералами.

Из первичных минералов этих пород наиболее сохранялся плагиоклаз. Однако он представляет собой зачастую лишь реликты отдельных кристаллов плагиоклаза, замещенного мелкоэллиптическим агрегатом вторичных минералов. В некоторых случаях наблюдаем отдельные сохранившиеся участки плагиоклаза, который впоследствии палеонизирован.

По кристаллам плагиоклаза, замещающего первичное вещество, обычно развивается агрегат зерен карбоната, кварца и хлорита. Карбонат представлен мелкими кристаллами кальцита, зерен велловиной огранки, являющей собой скопление округлых зернышек, обычно размером не превышающим 0,1 мм. Иногда наблюдаются и более крупные кристаллы кальцита, имеющие характерную штриховку. Кварц представляет мелкозернистый агрегат зерен, беспорядочно рассеянных между зернами кальцита, а иногда развивающихся в виде прожилков. Иногда наблюдается волнистое погашение кварца. Хлорит развит в виде зернистых и игольчатых агрегатов, развивающихся мелких кристаллов. Иногда наблюдаются реликты цветных минералов. Среди последних видны борроксы, замещенные агрегатом хлорита и железистыми окислами.

Основная масса выполнена агрегатом вторичных минералов, среди которых иногда случайно уцелели отдельные микроклины плагиоклаза.

Среди агрегатов вторичных минералов преобладают карбонаты, кварц, хлорит и пелиты. Карбонаты представлены кальцитом и сидеритом, расположенными как среди основной массы породы в виде мелких кристаллов и агрегатов, так и развитыми в виде прожилков по тонким трещинам, ориентированным в разных направлениях. Кварцевые агрегаты развиты как

1 Фауна найдена М. Ф. Даали в 1937 г., но пока не обработана.
в виде рассеянных по основной массе породы зерен, так и отдельными участками, где часто наблюдается развитие неправильных зерен кварца, до 0.5 мм размером, крупноизмельченных по краям более мелкими зернишками кварца. Бывает может, здесь наблюдается регенерация кварцевых зерен. Разбивается кварц и в виде прожилок в породе, выполненных мелкозернистым агрегатом зерен. В кварце часто наблюдается волнистое погасание. Хлорит в основной массе породы развит в виде мелких игольчатых агрегатов, в беспорядке рассеянных среди зерен вторичных минералов.

Основная масса породы часто интенсивно окрашена железистыми окислями. Отдельные агрегаты вторичных минералов часто развиваются в виде отдельных миндалин, окрашенных бурой каймой железистых окислов.

Туфы и туфобреции порфиритов. Обычно это — пестрые зеленовато-серые или серо-зеленые съементированные пластинчатые породы. Угловатые обломки величиной от нескольких сантиметров до 1—1.5 см и, очень редко, в некоторых туфобрециях, до 5—10 см в большие частицы находятся в цементе из более мелких обломков и туфа. По част людским включениям являются обломки андезита гипалолитной и витропироксеновой структуры. Платиклаз андезитов большею частью петлитирован как по периферии, так и в центральной части. Платиклаз относится к типу андезина и лабрадора.

Основная масса андезита обычно сильно разложена — охарирована и карбонатизирована. Цветные минералы обычно полностью разложены и замещены железистыми окислями и хлоритом. Таким образом, наряду с порфиритовыми туфами или туфобрециями здесь развиты и андезитовые туфы и туфобреции. В последних более крупные пластинчатые включения находятся в мелкообломочной массе, состоящей из обломков кристаллов платиклаза и отдельных зерен пироксена и рудных. Платиклаз обычно интенсивно петлитирован, а пироксен пироксен окружены каёмкой гидроокислов железа.

Основная масса туфа и туфобреций состоит из вулканического пепла вулканического пепла и окаменелого, иногда слабо сложного строения. Встречаются развитые в отдельных участках неправильные известковые образования, представляющие собой сростки мелких кристаллов карбоната, среди которых встречаются мелкие зернишки кварца и серпента. В основной массе также встречаются скопления гидроокислов железа, обнаруживающих скоплование концентрическое строение остатового типа.

Некоторые участки туфов отличаются значительным окрашиванием: кварц развивается мелкозернистым агрегатом, среди которого попадаются кристаллы карбоната, иногда с двойниковой решеткой.

Наблюдается интенсивная алюминизация отдельных участков туфов. В этом случае в основной массе развивается мелкозернистый агрегат из мелких неправильных кристаллов алюмината, карбоната и кварца. Вся порода окрашена бурыми окислями железа.

В шлаковых разностях туфов наблюдается развитие мелких неправильных прожилок, выполненных кварцем и карбонатом (кальцитом). Кварц, выполняющий прожилки в виде неправильных зернишек, иногда отличается волнистым погасанием.

Туфопесчаники. Из туфогенных пород после порфиритовых и андезитовых туфов и туфобреций большим распространением пользуются туфопесчаники.

Это мелкозернистые или среднезернистые, в большинстве серые или темносерые породы, часто с зеленоватым оттенком.

Среди включений в основной массе туфопесчаников преобладают более окатанные компоненты. Помимо андезита и продуктов его разрушения, встречаются отдельные зернишки кварца, отличающиеся окатанностью.
Наблюдаются некоторое фракционирование обломочного материала и более развитая слоистость. Прослои более крупнозернистых разностей туфопесчаников перемежаются с прослоями мелкозернистых песчаников.

Среди обломочного материала этих туфопесчаников порой присутствует более осколчатые обломки андезитов и обломки плагиоклазов.

Строение основной массы этих пород приобретает более пелитовый облик. Карбонаты и гидроокислы железа в этих породах равномерно расселяются в основной массе, но образуют обособленных агрегатов. Часто наблюдается развитие хлорита. Карбонатно-кварцевые прожилки в этих породах встречаются также, как и в туфах.

Песчаники и песчанисты сланцы. По отношению к туфовидным породам эти породы имеют резко подчиненное значение.

Обычно это более или менее тонкозернистые светло- или темнозернистые, с железистым оттенком, а иногда почти черные породы. Наблюдаются как слоистые, так и неслоистые разновидности этих пород.

Микроскопическое исследование песчаников показало, что основная масса их сложена более или менее равномерно зернистым агрегатом зерен кварца мозаичной структуры. Среди кварцевых зерен наблюдаются неравномерно рассеянные осколчатые обломки кристаллов плагиоклаза. Наблюдаются замещение по периферии обломков плагиоклаза мелкозернистым агрегатом кварцевых зерен. Среди мелкозернистой массы кварцевых зерен заметны неправильные агрегаты зерен хлорита. Среди цемента породы наблюдается также развитие карбонатного агрегата. Микроскопическое исследование слоистых разностей показало, что слой тонкозернистого пелитового состава, окрашенные железистыми окислами, переслаиваются с прослоями, сложенными более крупнозернистыми скоплениями кварцевых зерен. Часто развиты также прослои, сложенные слабо осколчатым неравномерноzerosитным песчаником.

Структура цемента описанных песчаников алеврошпателевая.

Песчанистые сланцы не имеют микроскопически выраженной слоистости и имеют следующее строение: алевритовые частицы представлены обломками плагиоклаза, мелкими зернами кварца, рудными зернами и пластинками мусковита. Весь этот материал более или менее равномерно рассеян в цементе, представленном бессструктурным ожелезенным пелитовым веществом, средноразмерный также встречаются агрегаты вторичного хлорита. В некоторых шлифах порода часто пересекают трещинки, выполненные мелкозернистым агрегатом кварцевых зерен, имеющих волнистое погасание, а также агрегатом зерен кальция и сидерита. Структура пород алеврошпателевая.

Глинистые сланцы были встречены всего лишь в одном обнаружении в истоках рр. Дранкii.

Макроскопически это тонкокоричневые плитчато-слоистые сланцы, заливающиеся в туюе, быстро переходящем в песчано-туфобоброкчию.

В шлифе среди кристаллического агрегата карбонатных и кварцевых зерен с большой примесью глинистых частиц много мелких неравномерноzerosитных угловатых обломков полевого шпата, значительно меньше широкосерна и немного сильно разложившейся роговой обманки. Слоистость очень мелкая и хорошо выражена.

Третичные отложения

Развиты на восточном склоне Срединного хребта, в нижней и средней частях бассейнов рр. Дранки и главным образом Каргп.

На основании данных исследований маршрутового характера третичные отложения стратиграфически мы делаем на две толщи. Более древней из них является дранкинская толща, а более молодой — каргпская толща.
Миоцен — средний плиоцен
Дранкинская толща

Отложения этой толщи являются туфогенными. Преобладающим развитием здесь пользуются туфы, туфобрекчи и туфоконгломераты андезитов и базальтов и туфоспесчаники. Редко подчиненное им назначение имеют нормальные известковистые песчаники, глинистые песчаники и окременные сланцы.

Туфы, туфобрекчи и туфоконгломераты. Общий цвет этих пород серый, с различными зеленоватыми оттенками. Макроскопически это пластичные породы с размерами обломочными включениями от нескольких миллиметров до 1—2 см в поперечнике. Кластические включения обычно угловаты и не окатаны, хотя в некоторых случаях наблюдаются окатанные включения, дающие переходы к туфоконгломератам.

Среди кластических включений туфов и туфобрекчий наблюдаются главным образом обломки андезита порфировой структуры. В андезитах видны немногочисленные разложенные кристаллы плагиоклаза; в основной массе бурое стекло с небольшим количеством микролитов плагиоклаза, а в туфоконгломератах, кроме андезитов, среди кластических включений наблюдаются слабо окатанные обломки разнообразных песчаников, сланцев и порфиритов. Под микроскопом видно, что основная масса пород состоит из угловатых или слегка окатанных обломков упомянутых выше пород и угловатых или слегка окатанных обломков плагиоклаза, кварца; в небольших рассеянных рудных зернах. Иногда в основной массе породы присутствуют небольшие количества пепла. Цемент карбонатный (в виде аггрегатов мелких зерен) или глинисто-железистый.

Постепенными переходами описанные породы связаны с туфоспесчаниками, имеющими в составе толщи подчиненную роль.

Туфогенные песчаники. Это довольно крепкие породы различной крупности зерна и различной окраски. В одном случае они являются тонкозернистыми или среднезернистыми, и тогда это более темные породы, темносерого или табачно-коричневого цвета, в других случаях это — крупнозернистые породы, и тогда они являются более светлыми окрашенными. Но в упомянутой закономерности между крупностью зерна и окраской наблюдаются и исключения в зависимости от преобладания того или иного материала.

Песчаники развиты то в виде отдельных горизонтов до нескольких десятков метров мощности, то в виде отдельных слоев или пачек и пересядают с высохновыми туфами и тufобрекчиами, а также с туфоконгломератами. Часто мы обнаруживали эти песчаники и в виде ксенолитов, до нескольких метров в поперечнике, среди четвертичных андезитовых и базальтовых покровов.

Песчаники обычно являются хорошо слоистыми и часто содержат рас тительный мусор и растительные остатки очень плохой сохранности. Под микроскопом песчаники отличаются плохой окатанностью обломков кварца, полевого шпата и других минералов. В породе преобладают обломки туфогенного происхождения. Очень редко в песчаниках туфогенный материал почти отсутствует или встречается в незначительном количестве. Песчаники в большинстве случаев неравномернозернистые, причем обломки андезитов и базальтов имеют наибольшую величину. Цветных минералов встречается очень мало. Цементом песчаников является главным образом глинистый материал с примесью карбоната и, реже, кварца; окисление встречено только в одном случае, и то не сильно.

Сланцы. Среди третичных отложений сланцы были встречены в единичных обнажениях.
Макроскопически это темносерые, почти черные, очень тонкозернистые, довольно крепкие и сильно осколчатые породы. Отдельность очень мелкая, неправильная, объясняется наличием большого числа трещинок, ориентированных в разных направлениях и выполненных карбонатом.

Сланцы состоят из неравномерно тонкозернистого материала с средней или плохой окатанностью зерен; редко окатаность зерен хорошая. Состав главным образом из зерен плагиоклаза и кварца. В некоторых сланцах попадаются обломки доломита и рудные зерна. Цветные отсутствуют. Цемент сланцев глинистый с наличием пелла, причем последние играет очень существенную роль. В цементе довольно много мелких растительных остатков.

В одном из шлифов видно, что сланец перемежает и имеет слеоды катакластического метаморфизма.

Породы состоят из описанных третичных отложений в нижней части толщи встречены небольшое и одиночные залежи порфирита.

Макроскопически это серые породы с частями и мелкими (до 0.5 мм) выделенными полевыми шпатов.

В шлифах видны многочисленные зерна плагиоклаза в основной массе из алунитизированных и каолинитизированных микролитов плагиоклаза и отдельных зерен кварца. Порфириты определяются как порфириты типа андезита.

В самом верху дрэсквинской толщи в грубозернистом турфогенном песчинке (обн. 178) встречена фауна Mytilus. Здесь мы имеем дело с банкой, так как количество фауны большое, но она принадлежит исключительно одному виду.

По Следжевичу, исследуемому изучением нашей фауны, этот вид найден на западном побережье Камчатки в нижнем отделе каварской свиты (только!), и поэтому настоящее обнаружение, со значительной долей вероятности, можно отнести к нижнему или среднему плиоцену. Но нижняя часть описанной толщи имеет более древний возраст. Скорее всего, она имеет плиоценовый возраст, так как миоцен Камчатки характерен проявлениями вулканической деятельности. Этот возраст на Камчатке имеют многие вулканогенные третичные отложения, но где в Карагинском районе проводить границу между миоценом и плиоценом, мы не знаем. Судя по нашим работам предыдущих лет в других районах Камчатки, мы считаем, что плиоценовые отложения трансгрессивно с угловым несогласием залегают на миоценовых, а третичные, в свою очередь, трансгрессивно и с угловым несогласием залегают на мезозойских.

Верхний плюоцен

Карагинская толща

Наблюдения, произведенные в 1937 г. над единичными обнажениями в нижней части течения р. Караги, и собранный здесь фактический материал, а также наблюдения М. Ф. Двали по р. Таклеваиам (левый приток р. Караги) дают возможность выделить по р. Караге толщу пород, которую мы назвали карагинской толщей. Эта однообразная толща пород состоит из мелкозернистых или среднезернистых серых или серо-желтых, нередких глинистых песчаников.

Под микроскопом основная масса песчаников сравнительно равномерозернистая, с средней или плохой окатанностью зерен. В состав песчаников входят кристаллы плагиоклаза, реже — кварца, еще реже — роговой обманки, микроксен и рудных, спонгированных темно-бурым глинистым цементом с кварцем и карбонатом.

Песчаники содержат фауну (обн. 180), среди которой Следжевичем определены следующие виды: Astarte ct. rollandi Ветн., Cardita ptilunensis
S l o d., Cardium sp. indet. (I) (ex. gr. Serripes groenlandicus), Cardium sp. indet. (II), Cardium sp. indet. (III), Cardium sp. indet. (IV), Lactevardium (Cerastoderma) sp. ex. gr. L. californiense (D e s h.), Laternula (A y l u a) hamata-pulchra sp. nova, Macoma quadrata sp. nova, Turritella sp. indet., ходы Corphides, причем в другом обнаружении (179) окаменелости моллюсков совершенно отсутствуют, но вся порода пропица многочисленными ходами червей.

Если исключить новые и не определенные до вида формы, то, по заключению В. С. Слюдевцева: Astaster cf. rollani, известна от верхнего плиоцена доныне, Cardia ptilunensis встречается в верхнем плиоцене. Larvicardium ex. gr. californiense, хотя и встречается от миоцен доныне, но чаще всего известна в плиоцене. Таким образом, фауна обн. 180 имеет верхнеплиоценовый возраст и наиболее сходство обнаруживает с непосредственно богатой верхнеплиоценовой свитой, а с значительно более бедной номорской свитой (тоже верхний плиоцен), развитой на н-ове Щемидта. 1

Четвертичные образования

В предыдущей работе (Щербаков, 1988) мы довольно подробно изучали вопрос о том, где на Камчатке проводить границу между третичными и четвертичными образованиями, и пришли к выводу, что при установлении этой границы можно руководствоваться тектоно-гироскопическими соотношениями, считая, что плиоценовые образования всегда дислоцированы и тектонически с угловым несогласием перекрываются постплиоценовыми образованиями, но при этом надо иметь в виду, что последние не всегда лежат гorskополю и, возможно, местами слабо дислоцированы (Дьяков, 1986).

Согласно этим признакам, а также на основании морфологических особенностей и их состава в разрезе четвертичных образований описываемого района мы выделяем (снизу вверх): покровный эфузивный комплекс, ледниковое отложение, древние аллювиальные отложения и современные аллювиальные отложения, а также отложения уствов рек и прибрежно-морские. При этом мы грубо делим их на постплиоценовые, охватывающие по времени образования доледниковую фазу, фазы первого и второго оплоденения и межледниковую фазу (Крыштофович, 1982), и постледниковую (включая сюда и современные).

Постплиоцен

Покровный эфузивный комплекс Срединного хребта

Выше, в разделе об орографии и геоморфологии района, мы упоминали о том, что этим образованиям принадлежит главная роль в строении рельефа описываемой части полуострова, а также о том, что излияния этих лав происходили на уже выровненную печенеглизированную поверхность. Эффузивы являются четвертичными донедниковыми, так как, перекрывая верхние плиоцен, они являются недислоцированными и в то же время часто изъедены цирками и карманами.

По Дьялу (1988), в основании этого покровного комплекса залегают ключи континентальных отложений, которые теперь находятся на большой высоте, что дает основание «приурочить границу между третичными и четвертичными отложениями на начало установления континентального режима и общего подъема страны, последовавшего после последней третичной орогенетической фазы».

Мощность покровного комплекса в описываемом районе достигает 300—350 м.

1 На о. Сахалине.
Излияния эфузивов, давших покровный комплекс, являются трехпластными излияниями. Большой разлом, как показано и на прилагаемой геологической карте, проходит по приперевальной части Срединного хребта. Как указывает Богданович (Bogdanowitsch, 1904), современный водораздел северной части Срединного хребта образован целой эруптивных очагов, излиния которых в основном образовали обширные покровы. К ним относятся Тылые, Айчельган, Яутояга и др.

Описание эфузивов покровного комплекса описываемого района и связанных с ним дает мы отложки до раздела о магматических породах.

Ледниковые отложения

В главе об орографии и геоморфологии района мы говорили о своеобразном ледниковом рельефе междууречных пространств прибрежной низменности. Это рельеф из беспрерывно рассеянных бугров и впадин разнообразной величины. Равнины развития этого рельефа сложены песчано-галечными отложениями, которые можно наблюдать в размытых береговых обрывах. В состав этих отложений входят угловатые или угловато-окатанные глыбы эфузивных и тufогенных пород, до 10 и реже больше сантиметров в поперечнике. Быстро выклинивающиеся прослойки, лишены и гнезд яйц и глинистых песков создают носовую сностость. В более мощных слоях галечники обычно не отсортированы, но кое-где намечается и слабая отсортированность, и тогда становятся очевидным общее горизонтальное и непрерывное заполнение этих песчано-галечных отложений своеобразной носовой сностостью.

В долинах рек подобный же рельеф приурочен к террасовым уступам: в 8—10 и 30 м высотой над уровнем воды в реках. Так как поверхности уступов являются задернованными, четвертичных ледниковых образований, слагающих их, не видно. Судя по наблюдениям в 1934 г. на р. Кол, где 30-метровый уступ погружается и дает обнажения валунно-галечных отложений иногда с заметной сортировкой материала и с ледниковыми штрихами на валунах, эти уступы сложены песчано-галечными и валуно-галечным материалом отложений подледниковых вод. Подобными же отложениями мы считаем и песчано-галечные отложения, слагающие своеобразный ледниковый рельеф в междууречных пространствах прибрежной низменности. Местами, как в пределах низменности, так и выше по течению, в долинах рек наблюдается и образование поддонных морен.

Еще в более ранней работе (Щербаков, 1938) существование в речных долинах двух террасовых уступов, вершине поверхности которых не сут на себе описанный выше ледниковый рельеф, мы объясняем наличием двух зон деградации Камчатки. Два уступа с различными отметками являются не чем иным, как остатками днищ двух разновозрастных ледниковых долин. Ледники более древнего оледенения были более мощными и самое оледенение более продолжительным, давшим более мощную толщу отложений подледниковых вод и поддонных морен.

Древние аллювиальные отложения

Эти отложения слагают древние речные террасы, к которым мы относим террасы с отметками, начиная от 10—12 м выше над уровнем воды в реке. В главе об орографии и геоморфологии района приведено количество террас и их отметки. Но так как 10—12, а также 30-метровая терраса сложены главным образом флювио-гляциальными отложениями и отложениями поддонных морен, описанными выше, к древним речным террасам мы должны, следовательно, отнести лишь террасу с отметкой в 20—25 м. Повидимому,
Постеликовые отложения

Отложения речных террас. Начало постеликового и современного эрозионного цикла мы относим к моменту образования речных террас с относительными отметками ниже 10—12 м.

Количество этих постеликовых и современных террас не меньше четырех. Их отметки приведены выше. Сложены они также обычными косослонными аллювиальными галечниками, состав которых зависит от состава размываемых пород.

Отложения приустьевые и прибрежно-морские. Отложения устьев рек и морского берега представлены трубообразными песками, гравием и галечниками. Благодаря совместному действию морского прибоя и речного течения они отлагаются в виде длинных «конусов», заставляющих приустьевые части рек отклониться на некоторое время от своего течения вдоль этих «конусов».

В приустьевых частях рек, где не оказывается морской прибойной, а также в тихих участках лиманов и Кагаргинской бухты происходит отложение песчано-щелевых осадков.

В виде исключения на берегу Кагаргинской бухты наблюдается песок, сильно обогащенный магнетитом. Магнетит вымыт, повидимому, из эфузивов, так широко развитых на восточном склоне хребта. Обогащение произошло вследствие того, что сильными течениями более легкие составные части песка унесены.

Другие магматические породы

Магматические породы описываемого района не отличаются большим разнообразием. Глубинные породы в районе совершенно не встречено. Большим развитием пользуются палеотипные и кайнотипные эфузивы и жильные породы. Некоторые из них являются до некоторой степени уже перерожденными, и занимающие определенное стратиграфическое положение описаны в предыдущей главе. Это разнообразные порфiritы и их туфы и тufо-брееки, а также туфы и тufо-брееки андезитов и базальтов. Неописанными магматическими породами района у нас остались кварцевый диоритовый порфрит и диабаз, а также кайнотипные эфузивы, слагающие покровный эфузивный комплекс Срединного хребта, которым мы и отводим настоящую главу.

Кварцевый диоритовый порфрит. С этой жильной интрузией связано наличие теплых Ивашкинских минеральных источников по р. Панкратьев. Здесь на протяжении до 1,5—2 км в нижних частях склонов долины наблюдались обнажения светлосерой массивной кристаллическо-зернистой породы с небольшими порфировыми вкрапленниками полевых шпатов и иногда кварца.

Возраст этой интрузии определяется тем, что она рвет породы, отнесенные к возрасту палеозоя — нижний палеоген, и, в свою очередь, прикрыта сверху четвертичным доледниковым покровным комплексом Срединного хребта.

Микроскопически порода состоит из узких двойниковых кристаллов платиклаза с неправильными очертаниями и ориентированных в разных направлениях кристаллов авгита, коеноморфно развитого кварца, мелкими пластиниками биотита и др.
В плагиоклазах с периферии — рудная пиль, изредка циркон, сфен, рутил, а внутри — вростки рудных зернышек и неправильные кристаллы платиоклаза, реже — вrostki роговой обманки, пироксена, апатита.

Кристаллы платиоклаза в большинстве несут так много рудной пиль и вростков, что при небольшом увеличении кажутся сильно разложенными и покрытыми как бы мутью.

Содержание кварца очень колеблется; в одних шлифах его значительное количество, в других он встречается в незначительных количествах. Величина зерна также очень непостоянна, причем кристаллы кварца всегда захвачены между платиоклазами и очень редко дают агрегат.

Биотит, встречающийся в породе, изоморфен к кварцу и плеохроирует в коричневых тонах. В большинстве же случаев он совсем отсутствует, и за счет его разнится хлорит.

Акцессорно встречается лейкоксен. Структура идиоморфно-зернистая. Как жильная фация в кварцевых диоритовых порфиритах встречается гранофировый апсет.

Гранофировый апсет. Это светлосерый или почти белая полукристаллическая порода. На 80—95% порода состоит из целочного полевого шпата, который в краевых частях и в отдельных мелких зернах дает микроклинмагнезитовое срастание с кварцем. Кварц, кроме того, встречается и в отдельных мелких зернах, причем в некоторых разновидностях количество его значительно, а в других очень мало.

Цветных встречается очень немного, а в некоторых случаях и совсем мало. Представлены они хлоритом, а к последнему всегда приурочены мелкие кристаллы циркона и сфена. В некоторых разностях хлорит преобладает над остальными цветными и, очевидно, развивается за счет биотита. Встречается также базальтовая роговая обманка, плеохроирующая в коричневатых тонах, и ярко-зеленый эпидот.

Структура гранофировых апсетов пандиоморфно-зернистая и призматически зернистая.

Д а б а с образует крутое или отвесные обрывы на правом берегу р. Поперечной, впадающей в р. Дранку. Здесь он в виде жилы мощностью не свыше 10 м сечет порфириты, относящиеся к возрасту мезозой — нижний палеоген.

Макроскопически это среднезернистая серовато-зеленая порода.

Под микроскопом порода в основном состоит из толстотабличчатых выделений платиоклаза, часто не имеющих присущих ему кристаллических ограничений. Подчиненное значение имеет монохлиновый пироксен. Еще реже встречаются следующие минералы (в порядке убывания): рудные, биотит, эпидот, донзит, хлорит, апатит.

Платиоклазы относятся к типам ряда № 43—45, что соответствует апендикулярный и лабрадору.1 Наблюдается двойникование по периклиновому закону. Двойниковые полосы отличаются значительной шириной. По отношению к пироксену платиоклаз резко идиоморфен и местами образует включения в зернах пироксена в виде мелких кристаллов. Местами наблюдается соссоритизация платиоклаза. Происходит замещение некоторых кристаллов мелким агрегатом зерен эпидота, донзита и альбит, между которыми попадаются тонковолокнистые образования актинолита. В отдельных участках по периферии соссоритизированных кристаллов платиоклаза наблюдаются образования мелких зернышек пироксенит.

Пироксен представлен типом диаблека и имеет ясно выраженные альтопроморфное развитие. В его кристаллы включены мелкие игольчатые кристаллы, припаздажающие, поливидному, роговой обманке. По периферии

1 Это не является критерием к отнесению породы к типу габбро, так как на Камчатке наблюдается повышение основность платиоклазов.
некоторых выделений ирокосена наблюдается замещение ирокосена хлорито-серpentиновым агрегатом.

В виде неравномерных зерен в породе рассеян рудный минерал. В нитот встречается в виде неравномерных коричневатых кристаллов, образующих скопления в некоторых участках породы. Возможно, он образует псевдоморфозы по ромбическому ирокосену и оливину.

Эпидот, цоизит и хлорит образуются в виде агрегатов, замещающих первичные минералы. Иногда наблюдается замещение плагиоклаза по мелким трещинам — преимущественно хлоритом.

В виде акцессорного минерала встречаются мелкие кристаллы апатита. Структура породы перааномерно-типогидномерно-зернистая.

Дайки андезитов. Характерной геологической особенностью даек андезитов является то, что все они ориентированы в одном направлении. Их простирания ЮЗ 240—250°, а углы падения от 60 до 90°. Мощности даек не велики и колеблются от 1 до 10 м. Линии в одном случае дайка андезита оказывалась мощностью больше 40 м и имела простирание NW 10° и угол падения 30°.

Дайки андезитов секут как мезозойские, так и третичные породы.

Среди андезитов даек различаются ирокосенные и роговообманковые разновидности, а также андезиты с крупнопорфировой структурой, лишенные цветных компонентов.

Порфировые вкрапленности последних принадлежат плагиоклазу, относящемуся к типу андезина — лабрадора. Иногда наблюдаются зональные кристаллы плагиоклазов, причем ядра их принадлежат к типу лабрадора. Количественно зон достигают ветви. Наблюдаются полисинтетические и прозрачные двойники кристаллов плагиоклаза, а также гомогенные структуры. Иногда замечается коррозия кристаллов плагиоклаза основной массы породы, причем этой коррозий подвергаются обычно кристаллы, представляющие более кислыми типами плагиоклаза (андезином). В некоторых кристаллах плагиоклаза по трещинам развиваются прожилки кеолитов.

Пироксеновые андезиты. В разностях андезитов, характеризующихся присутствием ироксена, последний представлен авгитом, отличающимся неправильной формой зерен небольших размеров. В зернах авгита наблюдаются вростки рудных зерен. Наблюдается развитие хлорита вокруг часто полузарушенных зерен ироксена. Хлорит — в виде агрегатов мелких зерен — вокруг зерна ироксена.

Роговообманковые андезиты. Разности андезитов, отличаясь присутствием роговой обманки, имеют весьма подобное значение. Роговая обманка представлена обыкновенной и базальтической, развита в виде вытянутых призматических кристаллов, среди которых наблюдаются двойники. Цвет роговой обманки в прозрачных пленах коричнево-зеленый и зеленовато-коричневый. В первом случае наблюдается плеохроизм по схеме:

\[
\text{Ng} — \text{буро-зеленый,} \\
\text{Nm} — \text{желтовато-зеленый,} \\
\text{Np} — \text{светло-зеленый.}
\]

Во втором случае плеохроизм наблюдается по схеме:

\[
\text{Ng} — \text{коричневый,} \\
\text{Nm} — \text{зеленовато-коричневый,} \\
\text{Np} — \text{зеленовато-желтый.}
\]

В кристаллах роговой обманки наблюдаются вростки мелких зерен плагиоклаза и рудного минерала. В некоторых кристаллах роговой обманки развиты опацитовые каемки.
Основная масса описанных выше типов андезитов сложена микролитами плагиоклаза размером до 0.1 мм. Микролиты представлены тонкими лейстами плагиоклаза, образующего двойники. Иногда среди микролитов плагиоклаза основной массы наблюдаются мелкие зерна пироксена, вкрапленные между лейстами плагиоклаза. Наблюдаются также мелкие рудные зерна. Встречаются отдельные зерна апатита.

Стекло в большинстве или меньшинстве количество имеется во всех разностях андезитов, причем преобладает темноцветное и бурое стекло, окрашенное за счет окислов железа.

Преобладают порfirированные структуры андезитов. Среди структур основной массы наибольшее распространение имеет гиалопилитовая структура.

Наблюдается также линзовидная структура основной массы. Реже встречаются пилотакситовая структура. Наблюдаются также разности андезитов с витрофировой структурой.

Вазальты. Прищная участие в составе покровного эфузивного комплекса Срединного хребта, базальты, как и андезиты, развиты главным образом в виде покровов, по встречаем они также и в виде даек.

Вазальтовый покров. Среди этих пород некоторые разности обладают больным количеством фенокристаллов плагиоклаза, в других же разностях вкраеплены встречаются редко или же вовсе отсутствуют.

Вкраеплены плагиоклазы представлены табличчатыми выделениями, преимущественно относящимися к типу лабрадора и битовница. Часто встречаются зональные кристаллы, где наблюдается до 5—6 зон обрастания. Ядра зональных плагиоклазов обычно состоят из битовница. Зоны, окружающие ядро, заметно свой состав по направлению к внешней зоне до среднего лабрадора. Наблюдается двойниковое срастание, а также глюмеропирофировые сростки кристаллов плагиоклаза.

Вкраеплены других минералов представлены оливином и авгитом, а в некоторых образцах — базальтовой роговой обманкой.

Фенокристаллы оливины представлены неправильной формы кристаллами. Иногда наблюдается двойниковое строение кристаллов оливины. В некоторых участках наблюдается опалоцизация периферических частей зерен оливины.

Фенокристаллы авгита развиты значительно редко оливин, представлены неправильными зернами, часто содержащими мелкие включения рудных зерен.

Роговая обманка, встречающаяся в одном из шлифов, отличается выпуклой призматической формой. Имеет интенсивно выраженный плеохроизм в темнообурных тонах.

Основная масса представлена главным образом тонкими лейстами плагиоклаза типа лабрадора, обычно, двойникового строения. Между большим количеством микролитов плагиоклаза встречаются микролитические выделения авгита и рудного минерала. В основной массе интерсертальной и пилотакситовой структуры наблюдается порфировые выкраеплены вышеописанных минералов и, редко, в основной массе гиалопилитовой и витрофировой структур.

Стекло обычно отсутствует. Лишь изредка в основной массе между микролитами плагиоклаза наблюдаются темнообранные участки, не реагирующие на поляризованный свет и, повидимому, нераскресталлизованные.

Среди вторичных процессов, отчасти затронувших породы, можно отметить пелитизацию отдельных зерен плагиоклаза, опалоцизацию оливинта, развитие в пустотах породы миндалей, выполненных кальцитом в виде мелкокристаллического кристаллического агрегата, и развитие в породе мелких трещинок, выполненных кальцитом и кварцем (опалом).

Дайки базальтов. Так же как и андезитовые дайки, дайки базальтов сенкет и мезозойские и третичные породы, но, в отличие от первых,
вертикальные дайки базальтов имеют почти широтное простирание, направленное на ЮВ 95—100°.

В центре базальты из дакк отличаются от аналогичных им разновидностей покровных базальтов. Наиболее существенным отличием является то, что в базальтах из дакк обычно наблюдается темное, почти черное стекло, зональность в кристаллах плагиоклаза встречается в исключительных случаях и плохо выражена, а их структура обычно неориентирована.

ТЕКТОНИКА

Тектоника района в основном определяется наличием Срединного хребта и прибрежной пименности. Еще работами предыдущих лет (предшественников и нами) выяснено, что Срединный хребет имеет складчатое строение. Он представляет собой антиклинальную структуру с крыльями, вложенными второстепенной складчатостью.

Наиболее древними породами в описываемом районе являются тufогенные сланцы с подчиненными им амфиболитами и роговиками сланцами; породы эти отнесены нами условно к палеозойскому периоду. Являясь сильно перемятыми — плюччатыми, они слагают здесь ядро антиклинальной структуры, повидимому, погружающейся в южном направлении, так как в истоках рр. Паланы и Панакры этих пород на дневной поверхности не наблюдается.

Восточное крыло этой антиклинальной структуры, а на широте истоков рр. Панакры и Паланы — и свод этой антиклинали, сложены мезозойскими породами. Последние не имеют той плоскости, которая характерна для палеозойских пород, а имеют лишь второстепенную складчатость с амплитудами складок до нескольких десятков метров. Кроме того, в мезозойских породах часто наблюдаются продольные сбросы, которые с особенной наглядностью выражены в обнажениях левого берега р. Панакры, несколько ниже термальных ключей.

Простирание палеозойских и мезозойских пород — СВ 20—25° — совпадает с направлением Срединного хребта.

Еще в предыдущие годы мы выяснили, что на Камчатке мезозойские породы залегают на палеозойских несогласно. Третичные отложения, к тектонике которых мы перейдем ниже, в свою очередь, транзитивно и с угловым несогласием залегают на мезозойских.

Третичные отложения на восточном склоне хребта развиты сравнительно по широкой полосой. В западной части этой полосы, в пределах развития тufогенной толщи, тufогенные отложения, имея северо-восточное — юго-западное простирание, наклонены то в ту, то в другую сторону от 15—20 до 30—40°, а в двух обнажениях были замерены углы в 60 и 65°, т. е. отложения собраны в несколько антиклинальных и синклинальных складок. В восточной части полосы, в пределах развития карналлинской толщи, к соожалению, нет достаточно хороших замеров, так как развитые там глинистые песчаники неслоисты, но, судя по залеганию в обнажениях фауны, азимуты падения глинистых песчанников близки к восточному направлению, с углями падения до 30—40°. Простирание третичных отложений примерно востоку выдерживается и совпадает с простиранием Срединного хребта.

Помимо описанных выше тангенциальных дислокаций, обусловливающих складчатое строение пород, слагающих Срединный хребет, в описываемом районе несомненно наличие также и радиальных дислокаций, обусловливающих гибкий характер этой складчатой структуры.

Среди радиальных дислокаций мы предполагаем наличие дислокаций двух систем, имеющих в плоскости каждого свое направление.

Главнейшими из радиальных дислокаций являются разломы, имеющие северо-восточное направление и примерно совпадающие с направлением
Полезные ископаемые

Из полезных ископаемых в описывающем районе встречены минеральные источники, сульфиды и магнетитовый песок.

Минеральные источники. На в а ш к и н с к я к л о ч и. 1 Находятся в 60 км вверх по р. Панкаре от сел. Ивашики. Расположены они на правом берегу р. Панкары, на поверхности 20-метровой террасы, имеющей всего 50 м в ширину. Почти у подошвы правого склона долины из-под осьмы, заросшей редкими кустами алых и травой, наблюдаются небольшие выходы теплой воды. Выходы представляют собой небольшие ключики, бьущие из спуска на воду из верхней части склона. Вода здесь чистая и прозрачная, температура в дневные часы доходит до 35-37°. В ночное время вода становится более прохладной и прозрачной. Из ключей поднимается лишь белий пар, напоминающий газовые выделения из вулканов. Выходы расположены на расстоянии 100 м друг от друга и образуют в общем виде полукруг. У северной границы ключей из-под осьмы вытекает струя темной воды, которая постепенно меняет цвет на светлый, а затем на бесцветный.

Др анкин с к и е ключи. Находятся на р. Дранке в 45 км от сел. Дранки. Расположены они на поименной террасе правого берега реки, у подножья 20-метровой террасы. Состоит из двух групп выходов, находящихся на расстоянии 200 м друг от друга по линии СВ 50°.

В нижней группе расположены четыре выхода, бьющих из-под осьмы. Выходы расположены кучно на расстоянии 3—15 м друг от друга. Каждый из выходов распадается на несколько зеркал, до 2 м в диаметре. В одном из них покрыто слоем зеленных водорослей. Некоторые

1 В литературе известны также под названием Панкарские источники, но местные жители употребляют приведенное нами название по имени ближайшего населенного пункта — сел. Ивашики.
из этих озерков расчищены руками местных жителей, так как ключи пользуются у них большинм успехом с лечебной стороны. Измерения температуры, произведенные нами 1 сентября, показали на выходах +50° C, при температуре воздуха +16° C. Вода прозрачная, безвкусная и обладает легким запахом сероводорода.

В верхней группе находятся два аналогичных выхода с теми же физическими свойствами воды.

Дракинские ключи, мы предполагаем, находятся на одной тектонической линии с Паланскими источниками, к описанию которых перейдем.

Западные Паланские ключи. Находятся в истоках р. Паланы, километрах в 30 на восток от Паланского озера. Расположены они здесь почти у самой реки на пойменной террасе левого берега. В 50 м от реки пойменная терраса уступом в 80 м высотой переходит в высокую террасу, переходящую дальше в нижний склон долины реки. У основания склона залегают породы, туфопесчаники и туфоконгломераты, представляющие собой сверху толщу песчаниковых пород, ниже — чередование горизонтальных слоев. Измерения температуры, произведенные нами на выходах, показали +63° C, при температуре воздуха +15.5° C (23 августа).

Верхние Паланские ключи. Эти ключи находятся на р. Верхней Палане (правый исток р. Паланы), расположены почти под перевалом в бассейне левого источника р. Лесониской. Описываемые ключи находятся в 1 км по прямой линии, почти точно на восток от Западных Паланских ключей.

В районе выходов развиты туфы и порфириты, мезозойского возраста, перекрытые сверху мощной толщей пород покровного четвертичного комплекса с ледниковыми цирками и карами.

В районе выходов (верхняя Палана имеет очень узкую долину с крутым левым склоном и с обрывами террас, с отметками 0.5, 2 и 8-10 м над уровнем воды в реке, на левом ее склоне.

Выходы представляют собой многочисленные источения из трещин отдельностей коренных пород левого берега, но больше всего источников вытекает в разных местах террасированного правого берега реки. Отдельных выходов очень много (мы насчитали 27), но их, вероятно, значительно больше, и расположены они многочисленными небольшими группами на обеих берегах, а также, повидимому, и в русле.

Максимальная температура выходов по нашим измерениям 29 августа составила +69° C, при температуре воздуха +9° C. Вода источников прозрачная, бесцветная, имеет запах сероводорода. Из ключевых отложений залегают лишь тонкие горизонты бедных выветрелых осадков, образующихся на камнях от испаряющейся воды. Химические анализы Верхних Паланских ключей по пробам, приведены в книге Пьяна (1937).

1 В истоках р. Паланы мы наблюдали три группы источников. Из них две группы находятся на р. Верхней Палане, являющейся правым истоком р. Паланы, и известны в литературе под названием верхней и нижней групп Паланских источников. Третья группа ключей находится на левом истоке р. Паланы. Это крайняя западная группа выходов, почему мы и дали им наименование Западных Паланских ключей.

2 Минимальные температуры некоторых выходов 55°.
Верхние Паланские ключи издавна пользуются славой целебных источников и с лечебными целями часто посещаются местными жителями.

Нижние Паланские ключи. Находятся в 0,5 км ниже Верхних Паланских ключей по р. Верхней Палане. Примерно в таком же расстоянии, по прямой линии, они находятся и от Западных Паланских ключей. Встречается очень эффективные выходы в виде озерков и истоков на поверхности заболоченной территории.

Температура этих выходов ниже других групп Паланских источников и не превышает +60°С. Анализ вод этих ключей по пробам, доставленным Давыдом, цитированным в книге Пийна (1937).

Все три группы Паланских источников, расположенные в широтном направлении, мы предполагаем, находятся на пересечении двух тектонических трещин (см. грамм о тектонике района), облегчающих доступ юровых вод на поверхность. На тектонической линии широтного направления, проходящей через все три группы Паланских ключей, располагаются и Джаинские ключи, описанные выше. Таким образом, все три группы Паланских ключей и Джандинские ключи связаны генетически, а также, понятно, и химически.

Сульфиды. Местами в породах, отнесенных к возрасту мезозой — нижней палеозой, наблюдается пиритизация в виде корочек пирита по плоскостям отдельностей, а также и в виде рассеянных в массе породы включений пирита. Но иногда, например при впадении в р. Правую Карам речки Атая, обильна пиритизированная, с мелкой вкрапленностью и с корочками сульфидов по плоскостям отдельностей является базальт. Наиболее пиритизированными являются породы в районе термальных ключей.

Сравнивая сульфидное оруденение пород описываемого района и района р. Андроповки (по нашим исследованиям 1936 г.), можно сказать, что в первом его меньше (5—7%), чем во втором (до 15%).

Магнитный песок. На северо-восточном берегу Карагинской бухты, у «летника», был встречен темный песок, обогащенный магнетитом. Подобные пески мы неоднократно встречали в разных местах Камчатки при работах предыдущих лет. Вскрывает магнитный песок образуется в районах большого распространения эфузивных пород. Всех этих случаях обогащенный рудой песок образовался в результате благоприятных условий накопления магнетита, вымытого из эфузивов. Площадь обогащенного магнетитом песка в Карагинской бухте незначительна.

По словам небольшого района и Ключевского горизонта, участок побережья от Камчатского рыбкомбината на протяжении до 12 км к югу также покрыт магнитным песком, причем процент магнетита в этом песке достигает 70.

ЛИТЕРАТУРА

Давыдов М. Ф. Мариных геологических исследований в Паланском районе на заходном берегу п-ва Камчатки, произведенных летом 1932 г. (предварительный отчет). — Фонд ГИГИ.

Давыдов М. Ф. К познанию геологического строения восточного побережья полуострова Камчатка. — Тр. ИГИ, сер. А, в. 72, 1936.

Дьяков В. Ф. Геологические исследования на заходном берегу п-ва Камчатки. — Тр. ИГИ, сер. А, в. 88, 1936.

Крылова А. Н. Геологический обзор стран Дальнего Востока. — Гео-разведка, 1932.

Пион Б. И. Термальные ключи Камчатки. — СОПС АН СССР, сер. Камчатская, в. 2, 1937.

Цербаков А. В. Два геологических пересечения полуострова Камчатки. — СОПС АН СССР, сер. Камчатская, в. 5, 1938.

1 Постройки, в которых живут местные жители летом, ваннися рыболовством.

2 В 100 км к северу от Карагинской бухты.
А. В. Щербаков

ГЕОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ ПО МАРШРУТУ СЕЛО КРИГАНИК — СЕЛО КАЛАХТЫРКА

ВВЕДЕНИЕ

Летом 1936 г. в составе Ворхов-Камчатской геологической партии мы принимали участие в работах Камчатской экспедиции СОПС АН СССР. Выполнили досрочно поставленное задание по маршрутным исследованиям в Срединном хребте и в истоках р. Шашины, часть партии должна была возвратиться в г. Петропавловск дольшами рр. Камчатки и Быстрой. Во избежание больного холодного хода из истоков р. Правой Шашины до Петропавловска, последняя вышла к Кроноцкому озеру, а отсюда, спускаясь в южном направлении, прошла маршрут до с. Калахтырки, а затем в Петропавловск. Собранные материалы по маршруту от сел. Кирганик до сел. Калахтырки, из-за последующего въезда в экспедицию на Камчатку, оставались непрочитанными, и лишь зимой 1938 г. я имел возможность их обработать и составить настоящий очерк.

Участие в работах маршрутной партии, помимо начальника партии — автора настоящих строк, принимали геологи А. С. Иванов, художница Э. Н. Лесючевская и проводники М. С. Пермяков (из сел. Кирганик) и А. И. Пермяков (из сел. Долиновки).

Наша работа по продолжению описываемого маршрута протекала следующим образом:

В маршрут из сел. Кирганик мы вышли 6 сентября на пять вьючных лошадях. Отсюда в начале пересекли в широтном направлении долину р. Камчатки, а затем вверх по р. Ишуньчина прошли в истоки р. Правой Шашины и перевалили здесь через хребет Валагинский, спустившись по р. Кроноцкой (так ее называли проводники), к потухшему вулкану Унана, у подножья которого 10 сентября остановились лагерем.

11 сентября была произведена рекогносцировка, а 12-го — восхождение на вулкан.

15 сентября от с. Унана вышли дальше в маршрут и прошли вниз по р. Кроноцкой до Кроноцкого озера, а отсюда — к потухшему вулкану Крашенникову. 17 сентября, во второй половине дня, поднимаясь по широкому и пологому основанию с. Крашенниковке сухими распадками, мы остановились ночевать, не обнаружив воды. Лишь накапливавшийся дождь дал нам возможность набрать чайник воды с подвезенного для этой цели брезента.

18 сентября близ ручейка от не успевшего сталя за лето снега, у основания внутренней западной стенки широкой кальдеры вулкана, мы разбили лагерь и произвели в этот день небольшую рекогносцировку внутри кальдеры.

1 Географически — это левый исток р. Шашины, но на Камчатке местные жители дают наименование рекам, глядя вверх по течению.

2 Остановимся на этом несколько подробнее, так как условия работы в вулканическом Кроноцком районе являются довольно своеобразными.
деры. На следующий день лагерь был переброшен на юго-западный склон конуса сошки, к имеющемуся там озерку, и я с М. С. Пермяковым совершил отсюда восхождение на сошку.

Отсутствие в течение трех последних дней более или менее сносной пищи для лошадей заставило нас 20 сентября покинуть с. Крашенинниково и перебраться на с. Узон, где в широкой кальдере вулкана, защищенной от холодных ветров и с теплой местами почвой, сохранились еще зеленые, буйно произрастающие травы.

23 сентября, оставив громоздкое снаряжение на Узоне, налегке поехали к вулкану Таушниц, куда и прибыли в тот же день, и разбили лагерь в половинном месте между склоном с. Узона и северо-восточным склоном основания с. Таушниц.

В тот же день, 23 сентября, я и А. И. Пермяков пытались взойти на вулкан, но эта попытка не имела успеха, так как из-за неудачно выбранного места для подъема с высоты около 2100 м (абс. выс.) начался кругой, из-за чего сложившегося снега обрыв, и мы, не имея коня и лыжниц, выбились из сил. На следующий день попытка восхождения была возобновлена; к нам присоединилась Э. И. Лосюковская. Поднявшись в начале на седловину между Таушницем и его паразитом, мы отсюда начали восхождение на вершину и поднялись на снежный восточно-северо-восточный край кратера вулкана.

25 августа мы покинули восточную кальдиру с. Узон и направились к вершине левого притока р. Семячик, который, как потом выяснилось, местные жители из колхоза Семячик называют р. Новомой. Наши проводники не знали этих мест. Спускаясь вниз по долине р. Новомой, мы все чаще и чаще встречали препятствия в виде трудно проходимых частей долины с крутыми и скалистыми склонами, пока, наконец, через несколько километров после поворота на юго-восток, мы не дошли до того места, где река падает водопадом в несколько метров высотой, а ее склоны вначале отвесными, а затем крутыми склонами уходят вверх до 150 м высотой. Поэтому мы вынуждены были подняться на верху по правому склону долины, выбравшуюся для облегчения лопадей часть продольствия и на себе переносили посевы в наиболее крупных местах подъема. Наверху оказывался ровная нерастительная поверхность лавового плато, по которому нам следовало идти от Узона.

30 августа мы прибыли в сел. Семячик, а на следующий день посетили начатые здесь немаононные разработки, расположенные на берегу Кроноцкого залива, в нескольких километрах к северо-востоку от устья р. Семячик.

 Из сел. Семячик берегом залива мы прошли в сел. Жупаново, куда прибыли 3 октября. Здесь из-за ожидания береговых обнажений, а затем изза начавшихся дождей мы пропустили 2 дня и вышли в дальнейшем маршрут, получив проводника до сел. Нальчево.

 Из Жупаново мы прошли вначале по восточному берегу Жупановского залива, затем к озеру Халыггерскому и долинами рр. Халыггер, Вахиль, Остриной и Нальчевой, переходя из одной в другую. 13 октября вышли в сел. Нальчево. 14 октября, двигаясь берегом моря, мы прибыли в сел. Калактырку, а на следующий день — в г. Петропавловск.

Всего за время с 6 сентября по 14 октября было пройдено 450 км рабочих маршрутов и зафиксировано 115 обнажений.

Как в подготовительный период, так и в процессе камеральной обработки материалов научное руководство работами партии осуществлялось Петрограхическим сектором Института геологических наук АН СССР, и, в частности, мы пользовались постоянным вниманием и помощью покойного акад. Ф. Ю. Левинсон-Лессинга.
ПРЕДШЕСТВУЮЩИЕ ИССЛЕДОВАНИЯ

Первым исследователем, захватившим своими работами описываемый район, был К. Дитмар (1901; Dittmar, 1855), пробывший на Камчатке с 1851 по 1855 г. В его работах мы находим некоторые сведения и о геологическом строении описываемого района.

Первое свое путешествие, затронувшее интересующий нас район, он совершил зимой 1852 г. Это путешествие он совершил из Петропавловска в Пицунду-Камчатск по центральной части страны, проехав долинами рр. Быстрой и Камчатки. Но геологических заметок по этому пути он не приводит, так как путешествие было произведено зимой и очень снежно.

Летом 1852 г. им было совершенное путешествие на вельботе вдоль восточного берега Камчатки — от Петропавловска до Усть-Камчатска. Во время поездки Дитмар собрал большой геологический материал, но чрезвычайная бедность и отрывочность наблюдений, а также уровень науки того времени придают его выводам теперь лишь исторический интерес, хотя фактический материал в некоторых случаях и до сих пор не потерял своей ценности, а для некоторых мест восточного побережья является единственным.

Летом 1854 г. Дитмар совершил путешествие из Петропавловска в с. Аначе, дальше — к с. Камчатской Вершине (Бакененги) и еще дальше — к вулканам восточного ряда. Во время этого путешествия он пересек Валаамский хребет долиной р. Щапинки (Чапина), пролетел между с. Уная и с. Таушчики (Таушчики) к Узону, а отсюда западным краем долины р. Новой (р. Северный Семячик) к устью р. Семячик, откуда восточным побережьем возвратился в Петропавловск. Но по тем же причинам, что указаны выше, его наблюдения и выводы сравнительно мало способствуют геологическому познанию этой части страны.

По данным Дитмар, акад. В. А. Обручевым (1892) была составлена геологическая карта Камчатки, к настоящему времени имеющая также лишь исторический интерес.

После Дитмара в геологических исследованиях Камчатки наступает перерыв до 1898—1899 гг., когда на полуострове работает экспедиция К. И. Богдановича (Bogdanowitsch, 1904). Однако работы последней почти не коснулись интересующего нас района. Лишь район долины р. Камчатки и окрестностей г. Петропавловска был затронут геологическими исследованиями этой экспедиции.

В 1907—1911 гг. на Камчатке работала комплексная экспедиция, организованная Рябушинским и охватывшая своими исследованиями почти всю площадь полуострова. Но единственные литературные следы геологического отряда этой экспедиции сохранились лишь в ряде кратких предварительных отчетов С. А. Конради (1911; Кель и Конради, 1925), касающихся главным образом южной Камчатки и интересующего нас в данном очерке Восточного вулканического хребта.

Являясь по своему характеру краткими и составленными на основании полевых дневников, эти отчеты дают мало сведений о геологическом строении района. Собранные же на месте геологические материалы экспедиции лишь только в настоящее время обрабатываются акад. А. Н. Заварником.

Много ценных наблюдений по Кроноцкому району приводит в описании своего путешествия руководитель ботанического отряда экспедиции акад. В. Л. Комаров (1912).

Следующий этап истории геологических исследований описываемого района связан с изучением нефтепосы на восточного побережья Камчатки. Начиная с 1933 г., здесь (на площади Богачевского месторождения нефти и
в его ближайших окрестностях) работали П. И. Полевой, Б. М. Штемпель и Н. И. Лазаренко. Затем, в 1930 и 1931 гг. на восточном побережье, с целью поисков нефти, работали большие экспедиции Нефтегорского геолого-разведочного института, охватившие своими маршрутами районы всю площадь от Петропавловска (на юге) до Усть-Камчатска (на севере). В этих работах участвовали В. А. Алферов, М. Ф. Дягили, Л. А. Гречинкин и Н. И. Лазаренко. Но все эти работы, за исключением работ Л. А. Гречинкина, происходили к северу от описываемого нами района. В 1931 г. Л. А. Гречинкин маршрутическисследовал бассейны рр. Лончек, Богачевки, Листьевичной, западный берег озера Кроноцкого и морское побережье от бухты Ольги до г. Петропавловска (за исключением мыса Пинпугского).

На основании материалов личных наблюдений и отчетов других авторов по работам до 1931 г. исключительно Л. А. Гречинкин (1935) составил свойший «Геологический очерк восточного побережья Камчатки» с геологической картой (масштаб 1:750 000) от Усть-Камчатска до Петропавловска. Этот очерк послужил нам основным источником к познанию геологического строения восточного побережья на интересующем нас участке, так как в этой работе автор приводит основные черты орографии и геоморфологии района, его стратиграфию и основные черты тектоники, а также указывает на наличие некоторых полезных ископаемых районов.

В 1935 г. автором настоящих строк было произведено первичное описание хребта Валагинского, километров в 25—30 южнее описываемого. Этим предшествующим пересечением, результаты которого опубликованы (Щербаков, 1938), были добиты материалы, осложняющие геологическое строение более южной части хребта Валагинского, что значительно способствовало познанию геологического строения части описываемого района.

Помимо указанных выше, летом 1933 г. на Камчатке работала экспедиция ЦНИГРИ. Б. И. Пийш дал детальное описание геологического строения вулкана Узон (1933).

Сведения о геологическом строении некоторых пунктов к югу от озера Кроноцкого и о минеральных источниках, имеющихся в описываемом районе, мы находим у Пийша в его книге «Термальные ключи Камчатки» (1937).

Этим исчерпываются все работы, произведенные в описываемом районе до 1938 г.

ОРОГРАФИЯ И ГЕОМОРФОЛОГИЯ РАЙОНА

Как известно, на Камчатке имеются два основных хребта — Срединный и Восточный, а между ними располагается Центральная депрессия, с рр. Камчаткой и Быстрой. Маршрут, описываемый нами, почти целиком проложен в пределах Восточного хребта, и лишь частично в западной его части была захвачена Центральная депрессия на широте сел. Кирганик.

Центральная Камчатская депрессия

На широте сел. Кирганик нашим маршрутом была захвачена лишь восточная часть Центральной депрессии, располагающаяся между р. Камчаткой и основанием хребта Валагинского. Здесь эта ее часть имеет в ширину около 25 км. В южном направлении она суживается, а в северном направлении расширяется.

Террасовидными уступами Центральная депрессия повышается по направлению от р. Камчатки к хребту Валагинскому, причем это превышение достигает 100—150 м относительной высоты.

Вся описываемая часть депрессии выполнена массой акумулятивного материала в виде аллювиальных и ледниковых отложений.
Первые из них слагают речные террасы, имеющие на правом берегу р. Камчатки следующие высоты уступов над уровнем воды в реке:

<table>
<thead>
<tr>
<th>Уровень</th>
<th>Высота (м)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Поверхняя</td>
<td>0.75</td>
</tr>
<tr>
<td>I надпойменная</td>
<td>2.25</td>
</tr>
<tr>
<td>II</td>
<td>4—5</td>
</tr>
<tr>
<td>III</td>
<td>11—12</td>
</tr>
</tbody>
</table>

причем наибольшим распространением пользуется поверхность последней террасы.

Кроме приведенных выше террас, на всем протяжении маршрута от р. Камчатки до левого истока р. Катанчий и у основания хребта Валагинского развиты увалы до 30 м от п. выс. Поверхности этих увалов несут на себе многочисленные бугры и бессточны впадины, располагающиеся в большинстве случаев в безлюдном и редко заселенном виде, но иногда впадины располагаются и цепочкой в виде озерков с различными уровнями воды в них. Бугры и впадины имеют от 1—2 до нескольких метров или, реже, до 15—20 м относительной высоты или глубины и несколько большие размеры в поперечнике. Близ на ували с подобным рельефом смотрят падали, то их вершины поверхности кажутся срезанными как бы общей плоскостью, лишающей верхний поверхность террасовидного 30-метрового уступа.

Еще на основании предыдущих исследований подобный рельеф мы относили к ледниковому рельефу, образовавшемуся отложениями подледникововых вод и подледниковых моренами, и связывали наличие поверхности этого уступа с первым оседлением, а наличие поверхности 10—12-метровой террасы — со вторым оседлением Камчатки.

Геологически Центральная Камчатская депрессия рассматривается нами как грабец, опускающийся по сбросам, проходящим у оснований границящих с ней хребтов.

Наличие одного из этих сбросов мы предполагаем и в рассматриваемом районе, так как Центральная депрессия здесь внезапно обрывается и границит с крутым западным склоном хребта Валагинского.

Хребет Восточный

Исследованиями предшественников, а также и нашими было установлено, что хребет Восточный на Камчатке является по преимуществу вулканическим, по его западные цепи (хребты Гапальские Востряки и Валагинский) и некоторые другие звенья (хребет Кумчор) являются складчатыми и имеют глубоватый характер. Нашими исследованиями 1886 г. это лишний раз подтверждается.

В пределах описываемого района хребет Восточный в орографическом и геоморфологическом отношении не является однообразным. Грубо, здесь имеются полоса хребта Валагинского и район лавовых плато, к описанию которых мы и перейдем. Кроме того, мы отдельно рассмотрим берега восточного побережья.

Хребет Валагинский

На широте сел. Кирияник хребет Валагинский имеет всего лишь около 30 км ширину. По сравнению с более южной частью здесь он является уже значительно постепенным и суженным. Его поперечное сечение в описываемом районе имеет седлообразную форму, причем седлообразный прогиб расположен в Центральной части и дренирован истоками р. Правой Шапины, а стрела прогиба имеет около 200 м. Главным водоразделом хребта здесь является его восточная часть, где с западного склона хребта берут начало истоки р. Правой Шапины, впадающей в р. Камчатку, а с восточного склона берут начало речки, несущие свои воды в озеро Крынское или в р. Жуннову.
Наибольшие высоты приурочены здесь к перевальной части хребта и не превышают 800—900 м абс. выс. В западной своей части хребет имеет еще меньшие высоты, не превышающие 700—800 м абс. выс. Но и тут и там рельеф является сильно гористым, с зубчатыми гребнями и вершинами, так как сложены они сильно трещиноватыми мезозойскими (?) порфировыми, их туфами и туфогенными породами и сланцами. Ледниковые цирки и кары, так красивые хребет в южной части, здесь сравнительно немногочисленны. В истоках р. Правой Шапицы, там, где имеется седлообразный прогиб, рельеф представляется более плоским и узким с относительно высотами до 200 м, сложенными миоценовыми песчаниками.

Мы предполагаем, что на месте седлообразного прогиба, имеющего погорельеф склонов, в миоценовое время существовал пролив, как и в южном и в северном направлениях отрезка полосы третичных отложений растягивается.

В противоположность погорельеф склонов седлообразного прогиба, западной и восточной склонов самого хребта являются очень крутыми и очень быстро, почти без всякого предгорий обрываются с одной стороны к Центральной Камчатской депрессии, а с другой стороны — к лавовому плато.

За исключением истоков р. Правой Шапицы, реки, стекающие со склонов хребта Валагинского, являются горными реками с быстрым течением и узкими неразработанными долинами.

Истоки же р. Правой Шапицы, размывающие сравнительно мягкие породы, имеют уже хорошо образованные долины с покрытыми в них анкумулятивным материалом в виде аллювиальных и ледниковых отложений. Ледниковые отложения здесь образуют тот же своеобразный мезорельеф, что и в долине р. Камчатки.

Лавовое плато. Громадное пространство восточного побережья п-ова Камчатки на широте хребта Валагинского (и Ганальских Востряков) занято лавовыми плато с насаженными на них вулканическими конусами. Местные жители эти выскокогорные плато называют «долями», например Жупановский дол, занимающий громадное пространство между хребтом Валагинским на западе и группой вулканов: Таушниц, Узон, Кихтинич и Большой Семячник — на севере, северо-востоке и востоке этого распространения плато. Долины-доломы в общем ровные и плоские поверхности, покрытые мхом или слоем черной плаковкой дресвы, и полого наклонны в сторону моря и к озеру Кроноцкому. В описываемом районе максимальная высота лавового плато приурочена к группе вулканов Унапа, Таушниц, Узон, где она достигает 1000 м над ур. моря, но у озера Кроноцкого она снижается до 500 м; в сторону моря лавовое плато сужается еще ниже, образуя там скалистые береуга. Речной сетью лавовые плато дренированы очень слабо, причем, так как местами плато несколько смыты и сложены на поверхности рыхлыми вулканическими образованиями, то русла распадков лишь весной, во время таяния снегов, наполняются водой, летом же и осенью они суши, и в них нагромождены гальки и валуны эфузивов.

Местами на Камчатке поражает общность низких террас в уделенных групп из других районов, имеющих различные геоморфологические особенности. Так, речные долины лавового плато в районе озера Кроноцкого имеют террасы с следующими высотами уступов над уровнем воды в реках:

<table>
<thead>
<tr>
<th>Порядковый</th>
<th>высота, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пойменная</td>
<td>1</td>
</tr>
<tr>
<td>I, надпойменная</td>
<td>3</td>
</tr>
<tr>
<td>II</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>12</td>
</tr>
<tr>
<td>IV</td>
<td>30—35</td>
</tr>
</tbody>
</table>

Причем верхняя терраса постепенно переходит в поверхность лавового плато.
Наиболее выдержанными здесь террасами являются 12- и 30—35-метровые.
В отличие от хорошо разработанных долин с террасами на их склонах, некоторые речи, дренирующие лавовые плато, находятся в стадии интенсивной эрозии, и в них не только не происходит отложения аккумулятивного материала, слагающего террасы, а, наоборот, происходит усиление размывов русел, нижняя часть долины этих рек является узкой, щелевой, а вершины — крутой, без террасовидных уступов. Примером такой реки является р. Печал 1 на месте ее излучины, обращенной выпуклостью к западу.
В описываемом районе однообразие лавовых плато нарушается наличием расположенных на них вулканических конусов (сопки Унача, Кракенников, Тауниц и др.); абсолютная высота некоторых из них достигает почти 2400 м. Описанные этих конусов мы отложим до специальной главы.
Помимо вулканических конусов, однообразие ровной поверхности лавовых плато в описываемом районе нарушено в бассейнах рр. Халыген, Вахиль и Островной. Здесь в том, что здесь проходит горная гряда, которая начинается с с. Камчатская Вершина — в правых истоках р. Камчатки, захватывает с. Жупановскую и кончается мысом Шипунским. На основании наших работ, а также работ предшественников, устанавливается, что в основном эта гряда сложена новейшими вулканическими образованиями, но в районе описывающего пересечения и на м. Шипунском широко развиты норвежские осадочные туфогенные образования. В районе описывающего пересечения гряда представляет собой или самостоятельные небольшие горы, или предгорья с. Жупановской. В обоих случаях здесь имеем небольшие горы с довольно плоскими вершинами, и лишь в истоках р. Вахиль и по р. Островной они кое-где имеют острые вершины или зубчатые гребни. Вся эту гряду мы рассматриваем как горст, в котором лишь местами повсеместные вулканические образования смыты, и тогда здесь выглядят третичные или мезозойские отложения.
Участки восточного побережья, пройденные маршрутом. Своим маршрутом мы прошли по восточному побережью Камчатки, на участках от устья р. Семячку до р. Жупановы и от сел. Наличево до сел. Калахтырь.
Береговая линия на участке от р. Семячка до р. Жупановой образует довольно плоскую и пологую кривую линию, обращенную выпуклостью к западу. На протяжении этого участка характер берега не является одинаковым. Так, на отрезе от устья р. Семячка до р. Березовой береги являются скалистыми, с вертикальными обрывами от 10—12 до 30 м. Такой же характер носит берег и к северу, от устья р. Семячка. Скалистость берега прерывается лишь редкими понижениями в приустьевых частях небольших речных долинок. Плавность очертания береговой линии здесь несколько нарушена из-за наличия выступающих в море небольших мысов, наибольшим из которых является Семячинский. Берег здесь образован постоянными размывающимися вулканическими породами. Из-за краткосрочности времени мы не имели возможности произвести более позитивные наблюдения, но, кажется, на этом отрезе берега наблюдаются две террасы, причем одна из них является более древней и имеет высоту уступа в 25—30 м над ур. моря, а другая, более молодая, имеет около 10—12 или 15 м высоты. В глубь страны они постепенно повышаются и довольно быстро сливаются с осложнениями или предгорий расположенными невдалеке вулканов (сопки Березовая, Малый и Большой Семячки).

1 Повидимому, нерадостной мудростью и объясняется так удачно данное ей местными жителями наименование.
Аналогичным описанным является также берег м. Жукановского, а, через небольшой промежуток, и южное продолжение его. По здесь берег более высок — от нескольких десятков до 100—150 м. — и образован обрывами размываемых гор, подступающих к самому берегу и сложенных породами жукановской свиты. Следует отметить, что южный берег Жукановского и южнее его из под воды выходят в виде островов небольшие скалы, представляющие остатки сохранившихся от размывания гор.

Другой характер строения берега наблюдается на отрезке от р. Березовой до р. Жукановской, а также в приустьевой части р. Семички. Особенно характерным оп является на отрезке от р. Березовой до р. Жукановской. Это тонкий погребенный берег с планированной поверхностью, неровной береговой линии. На протяжении всего берега здесь наблюдается современный песчаный или песчано-галечный штормовой вал, а за ним (в глубь страны, параллельными рядами расположены аналогичные же, но более древние валы. Высота валов от основания до перегибов — от 1,5 до 3 м, а располагаются они в 30—40 м друг от друга, причем более древние валы покрыты зарослями кедровника, а промежутки между ними — травянистой растительностью. Всего мы насчитали здесь до 7 параллельных валов. Между валами, а в особенности за современным штормовым валом, по-видимому, располагаются небольшие озера. Дальше, за штормовыми валами, местность представляет собой низменность, которая, постепенно и очень неровно покрытая, большими языками вдоль речных долин заходит в глубь страны, это так называемая Жукановская низменность. Всяма к берегу низменность представляет собой сухие или мокрые тундры или же болота.

Совершенно таким же, как и только что описанное, является побережье на участке между сел. Налычево и Калахтыркой. Отсюда в глубь страны уходят безлесная Налычевская низменность. Но помимо параллельных рядов штормовых валов, характерной особенностью побережья Налычевской низменности является наличие одного стоящей у сел. Калахтырки скалы до 30—40 м высоты, сложенной породами валагинской свиты. Такие же скалы и наносы, по в виде островков, здесь наблюдаются в прибрежной части моря.

Характер описанных выше берегов свидетельствует о наличии берегов двух категорий: к первой категории относятся берег на отрезке между рр. Семички и Березовой, а также берег м. Жукановского и южнее; ко второй категории относятся берега на отрезках между рр. Березовой и Жукановской, а также между сел. Налычево и Калахтыркой. Из приведенного описания ясно, что берег первой категории испытывают в настоящее время отрицательное движение, а берег второй категории — положительное движение, т. е. в первом случае происходит наступление моря на сулу, а во втором — отступание моря.

СТРАТИГРАФИЯ

В стратиграфическом отношении все породы, встреченные нами в маршруте, мы делим, в первую очередь, на мезозойские (?), третичные и четвертичные.

Мезозой (?)

Сколько мы относим своеобразную и очень характерную для Камчатки мощную толщу осадочных зеленокаменных пород, которую еще по работам 1934 и 1935 гг. выделили в так называемую валагинскую свиту, приписываєй ей, по аналогии с другими районами Камчатки, мезозойский возраст.

Валагинская свита. В описываемом районе свита была встречена нами, с одной стороны, в хребте Валагинском, а с другой — в бассейнах рр. Ва-
хиль и Островной. И в том и в другом случае в составе свиты принимают участие породы, макро- и микроскопически крайне сходные с породами этой свиты в других районах Камчатки. В зависимости от района меняется лишь соотношение в преобладании или в уменьшении в составе свиты тех или иных групп пород, выпадением некоторых членов свиты в различных районах и их не всегда однозначно заимствованное стратиграфическое положение. Объясняется это тем, что свита, имея вулканогенный характер, отличается крайней фациональной изменчивостью как по простиранию, так и по наложению. Поэтому в описываемом районе мы не имели возможности, в виду маршрутов характера исследований, произвести в составе свиты внутренние стратиграфические подразделения, да едва ли это возможно сделать без детальных геологических исследований, только на основании маршрутоых работ.

В хребте Валлажинском, в районе описываемого пересечения, в составе свиты принимают участие различные тучфеновые породы, порфировые и порфиритовые тUFFобрекчи и тUFFоконгломераты и кремнистые сланцы. Породы пронесены в порядке их убывания в составе свиты.

ТУФОГЕННЫЕ ПОРОДЫ являются довольно тонкими, сильно осколочными породами зеленого цвета различных оттенков. Преимущественно они тонкообломочные, и редко наблюдались средние- или крупнообломочные породы. Тонкообломочные разности этих пород в большинстве случаев являются хорошо сцепленными, причем сцепленность обусловлена чередованием прослоев с различной крупностью обломков или, реже, пересланчиванием через 10—20 см с кремнистыми сланцами.

Под микроскопом они состоят из обломков филлитов, граувакового песчаника, кремнистого сланца и авгитсодержащих эффузивов. Наблюдаются очень сильная хлоритизация и серпицизация, а в некоторых случаях — эпидотизация.

ПО Р ФИР И Р ТЬ ИМЕТ различные, то светлые, то темные, оттенки зеленого цвета. Среди порфировйт различаются роговообманковые, авгитовые, плагиоклазовые и др.

Роговообманковые порфириты — светло-зеленые с частыми и мелкими порфировидными вкраплениями роговой обманки. Под микроскопом видны впервые серпицизированные плагиоклазы. Роговая обманка — обыкновенная с нормальной схемой плагиоклаза. По трещинам развит эпидот-калиевый материал.

Авгитовый порфирит — зеленово-серого цвета. В плайфах имеет порфировую структуру. Порфировидные вкрапленники представлены авгитом, общий фон — сильно измененными плагиоклазами, превратившимися в сплошную серпи-каолиновую массу. Сильно развита также серпицизация плагиоклазов, причем эпидот представлен землистой разностью.

Плагиобазальтовые порфириты имеют травянисто-зеленый цвет. Плагиоклаз здесь изменен процессами серпицизации, эпидотизации, хлоритизации и карбонатизации. Появляется вторичный альбит, выполняющий поры породы и образующий варьоль.

Порфирит, отвечающий по составу авгит-гиперстеновому анделзу, — порода темно-зеленого цвета. Под микроскопом наблюдается очень сильные постмагматические изменения составных частей: серпицизация, карбонатизация, эпидотизация плагиоклазов и хлоритизация светлых составных частей.

Порфириты, отвечающие по составу плагиоклаз-авгитовому базальту, представлены породами темно-зеленого цвета с мелкими выделениями полевых шпатов. В плайфе плагиоклазы и общий фон породы сильно эпидотизированы. Местами наблюдается и плагиоклазизация плагиоклазов, причем плагиоклаз развит в виде псевдоморфоз по плагиоклазу. Авгит хорошо сохранился и местами слобоженовал.
Туфобре́чия. По составу туфобре́чий различны. Встречны́ были сле́дующие их разності.

Плотные и массивные темнозелёные породы, определяющи́еся как туфобре́чии лишь под микроскопом, состоя́т в основном из обложков эффе́зивных пород, отдельных зерен кварца и плагиоклаза и ру́дных минералов. Имеются также обложений тра́лвантовых песчаников с фи́ллитоподобной основной массой, включающей, в свою очередь, небольшие обложки эффе́зивов. Обращает внимание значительное кільчество амфита. В пільфах наблюдается эпидотизация пи́роксенов и полевого шпата. Развити́ и хлори́тизация.

Туфобре́чия, представленная роговообъёмковым порфиритом с редкими включе́ниями небольших обложков эффе́зивных пород и еще мельче́ — фи́ллитов. Отмечается интенсивная серпи́тированность плагиоклазов и эпидотизация. Макроскопически это темнозелёный порфирит с незначи́тельными выде́лениями роговой обманки, без видимых пе́ровозмеренных вклю́чений посто́ронних пород. Лишь в некоторых случаях наблюда́ли туфобре́чии, определя́ющиеся в поле как таковые. Это среднеобломочные темно- или светлозеленые породы, состоящие из обложков до 1 см и менее в поперечни́ке. Макроскопически эти туфобре́чии состоя́т из обложков измене́нных эффе́зивов разного со́става и кремнистого сланца. Плагиоклазы их на́до серпи́тированы. Цемент известковистый.

Ту́фоконгло́мерат. Наблюда́лись лишь в одном обнаже́нии у подножня с. У́зана. Состо́ят из ока́танных и угловато ока́таных зелёных и серо-зелёных галек, от некоторых милиметров до некоторых санти́метров и редко несколько большее 1 см в поперечни́ке. Среди галек пре́облада́ют гальки роговообъёмковых порфиритов.

Кремни́стые сланцы. Наблюда́лись лишь в виде светло- или травянисто-зелёных прослоёв, от 10 до 20 см мощно́стью, в пересла́ваниях с ту́фогенными порода́ми.

По рр. Вахи́ль и Островной описыва́емая свита представле́на порфирита́ми и туфогенными сланца́ми.

Порфириты здесь не отличаются разнообрази́ем, как в хребте Ва́лагинском, и представлены зелёноватыми породами с порфироваными вкра́пленниками полевых шпатов — плагиоклазов. Плагиоклазы вкра́пленники и основная масса породы изменены процессами серпи́тированием. Кроме того, наблюда́ются эпидотизация и хлори́тизация составных частей. Иногда трещины в породе выполнены вторичным альбите́м.

Туфогенные сланцы. Макроскопически это темные, почти черные, с зелёноватым оттенком, тонкослоистые породы. Под микроскопом они состоя́т из обложков фи́ллитов, порфиритов и участков желто-вулка́нического стекла. Обогащены бурыми окисля́ми железа и углистым ве́шеством. Так же как и для всех предыдущих пород, наблюда́ется эпидоти́зация, хлори́тизация и серпи́тирование. Кварц относительно свежий.

Третичные образования

Третичные образования описывае́мого района мы расчленя́ем на константи́новскую свиту и свиту м. Жу́панско́го. Перву́ю мы называ́ем по имени р. Константиновской, стека́ющей с восточного склона хребта Ва́лагинского (в 25—30 км к югу от исто́ков р. Правой Шапи́ны) и впадаю́щей в р. Левую Жу́панию, где аналогичные образования мы встре́тили впервые в 1935 г. (Шербаков, 1936); вторая была установле́на еще в 1931 г. Л. А. Гре́чняким (1935) и назва́на им по месту её нахожде́ния именем м. Жу́панско́го.

Константиновская свита в рассматри́ваемом районе разви́та в исто́ках р. Правой Шапи́ны и по р. Вахи́ль.
В первом случае это сравнительно однообразная толща пород и состоит главным образом из песчаников. Большей частью это некрепкие, слоистые, темно-серые или коричнево-серые, мелкозернистые глинистые песчаники; реже они среднеzerстисты и зеленовато-серого цвета. Указаные разности песчаников, то часто, то редко переслаивались между собой, как, где содержат прослои, до 10 см мощности, коричнево-желтых или коричнево-смальных глин с алюмосиликатными концентрически-скрупулезными конкрециями величиной до куриного яйца.

Иногда такие же концентрически-скрупулезные конкреции (или отдельности (2)) имеют и самые песчаники, но величина конкреций здесь достигает 20 см в диаметре.

В исключительных случаях песчаники содержат редкие рассеянные зеленые гальки пород вулканической свиты.

Под микроскопом песчаники состоят из сцементированных обломочков филлитов, глауконита и других минералов — кварц, плагиоклаза, биотита. В песчаниках сильно развит процесс карбоанитации. В некоторых пиллях наблюдается значительное количество рудных минералов.

В одном из темно-серых мелкозернистых песчаников были обнаружены очень редкие и очень плохой сохранности фауна моллюсков и растительные остатки, а также ходы червей.

Аналогичные по внешнему виду и минералогическому составу песчаники развиты и по р. Вахиль, но на русле с песчаниками здесь большую роль играют мелкоосколочные коричнево-желтые и зеленовато-алевритовые концентрически-скрупулезными конкрециями глины, встречающиеся в илестых р. Правой Щапына лишь в виде тонких прослоев.

Возраст свиты, по аналогии с такими же отложениями по р. Константиновской, определяется как миоценовый. Мощность свиты определяется в несколько сотен метров. В истоках р. Правой Щапины свита дилосцирована и моноклинимально, с азимутами падений от ЮВ 160° до ЮВ 175° и с углами в 25—30°, залегает среди пород вулканической свиты.

По р. Вахиль характер дилосцированной свиты не установлен, и здесь она с одной стороны по предполагаемому тектоническому контакту контактирует с вулканической свитой, а с другой стороны — с нижееописываемой свитой м. Жупановского.

Свита миса Жупановского. Эта свита развита при устье р. Жупановой, слагая здесь обнівившийся правый берег реки, на котором расположено сел. Жупаново. Она рас пространяется на всем полуострове, ограниченном с запада озером Жупановским, а с востока — заливом Крюцким, далее по нашему маршруту, проложенному к озеру Халыгерскому и по р. Халыгер, впадающей в это озеро.

Очень характерными и наиболее развитыми в описываемом районе породами этой свиты являются вулканические туфы и туфобрекчики.

Макроскопически эти породы состоят из сцементированных угловатых обломков различных горных пород и имеют общий темно-буровый цвет. В отдельных разностях описываемых пород преобладают то среднемледомчатые туфы с обломками от долей миллиметра до 1—2 мм, то крупнообломочные породы с обломками до нескольких сантиметров в поперечнике. В пиллях преобладают обломки сильно измененных гипотермальными процессами разнооб разных эфузивных пород, причем иногда наблюдается большое количество черно-зеленого вулканического стекла.

Туфы и туфобрекчики залегают в виде горизонтов до нескольких десятков метров мощностью, переслаивались с песчаниками. Песчаники различных ной крупности зерна, коричневато-серые, серо-желтые и темно-серые, почти черные, обычно содержат примесь туфового материала. Иногда песчаники имеют шаровую отдельность. В некоторых случаях в песчаниках наблюдались тонкие прослои мелкого конгломерата.

5 Тундя Камчатской эксп., вып. 3
Среди описанных выше пород на северо-восточной оконечности м. Жупановского в виде пластовых залежей, до 10 м мощности, залегают горизонты альпин-гипертензового андезита. Это тёмносерая кристаллическая порода с отчетливым порфировидным строением. Под микроскопом в кристаллинах — исключительно плагиоклаз, значительно измененный, ненапаянный. Основная масса состоит из пироксена, плагиоклаза и обильного количества хлоритового минерала. Есть карбонаты, которые видны в породе и микроскопически, будучи развиты по трещинам отдельностей.

Границы описываемой свиты остались неизвестными, так как в северо-восточной части холма ее развитие опа кончается на правом берегу р. Жупановой или обрывается морским берегом, а в юго-западной, на месте ее контакта с конгломератовой свитой, имеется большой перерыв и обнажения.

Во всяком случае, видимая мощность свиты определяется не одной сотней метров.

Невыясненной осталась также и ее дислоцированность, так как слоистость пород этой свиты в наблюдаемой лишь на северо-восточной оконечности м. Жупановского, где она (порода) имеет залежь надачи 613750 и угол падения 45°.

Окаменелостей в этой свите также не обнаружено, и Гречаники, параллелизируя ее с кроноцкой свитой, приписывают ей миоценовый возраст.

Четвертичные образования

Отрывочность и неполнота фактического материала, являющегося неизбежным следствием маршрутового характера исследований, не позволяют расчленить четвертичные образования в возрастном отношении. Лишь грубо и условно мы делим их на постплюоценовые [обхватывающие доедниковую фазу, фазы первого и второго оледенения и межледниковую, предложенные Криптофовичем (1932) как показатели времени четвертичной геологической истории развития флор и климата Дальнего Востока] и постплюоценовые (обхватывающие постдедниковую и современную фазы, предложенные Криптофовичем для того же цели).

Постплюцен

По происхождению постплюценовые образования в районе разделяются на вулканические образования и осадочные отложения.

Вулканические образования. Из всех четвертичных образований описываемого района вулканические образования пользуются наибольшим распространением, слагая обширные плато-долины с насажденными на них вулканическими конусами.

Ниже мы дадим лишь описание пород, слагающих долины, оставляя описание вулканических конусов до специальной главы.

Вулканические образования плато-долин. В районе маршрутового пересечения плато-долины сложены вулканическими образованиями, везде одинаковыми по характеру своего образования и составу. Из сопоставления отдельных разрезов вулканического комплекса, а также сведения по гипсометрическому положению этих разрезов, мы приходим к выводу о возможности деления всех толщ вулканических образований плато-долин на три части: нижнюю, среднюю и верхнюю.

Нижняя часть вулканического комплекса. Это наиболее древние образования плато-долин. Развиты они на побережье от р. Верховой до р. Семячков несколько дальше, к северо-востоку от последней, слагая низкие морские обрывистые берега, от 10—12 до 25—30 м высотой.

Самые низы этого комплекса представлены пемзовыми туфами. Пемзовые туфы состоят из скопления обычно окатанных (но без заметной сорти-
ровки материала в образцах) и слабо съементированных кусков пемзы самой разнообразной величины (от мельчайших обломков до 0.5 м в поперечнике). Иногда, как, например, на морском берегу несколько северо-восточнее устья р. Семчик, в этих пемзоносных образованиях много крупных кусков, а, например, на правом берегу р. Березовой они состоят лишь из осинковатой пемзы. Окраска отдельных кусков пемзы также разнообразна (см. главу о полезных ископаемых).

В шлифах пемза состоит из основной пузырной массы, представленной светло- или буро-коричневым стенолом с показателем преломления меньше 1.54. В основной массе рассеяна масса вкрапленники плагиоклаза, авгита и гиперстена. Плагиоклазы — с хорошо выраженной зональностью, причем в некоторых случаях с желтыми участками стекла плагиоклазы окрашены в тот же цвет. В некоторых шлифах заметна флюидальная структура стекла. Отдельные куски пемзы залегают в мелкообломочном и очень слабо съементированным, растрескивающемуся между плитами туфу светло-кремового цвета, с мелкими кусочками пемзы и серых и темносерых эф- фузивов. Такого же цвета эфузивы с порфировидным строением попадаются на ряду с пемзой и в более крупных угловатых кусках, до кузана и больше величиной.

Среди этих эфузивов преобладают обломки авгита-гиперстено-резинового апен-дезита. В тонкозернистой основной массе их, почти не содержащей стек- ла, мицеллы плагиоклаза, авгита, гиперстена и рудных. В этой основной массе обнаруживаются вкрапленники плагиоклаза, авгита и гиперстена. Преобладают вкрапленники плагиоклаза, которые на основании углов погасания в зоне MP и в зоне M (010) относятся к лабрадору № 58—62. Крупные кристаллы плагиоклазов зональны, а ядра их слегка эпидоти- зированы. Пиоли относятся описанным пемзра к риолитовым.

На описываемом участке побережья на пемзовых туфах залегают стек- ловатые туфобреции в переслаивании с андезито-базальтовыми покровами и со слоями туфогенных песчаников и мелких галечников, а также с белыми гризоплитами вулканического пепла.

Туфобреции залегают в виде пластов мощностью до нескольких метров, по местам слагают береговые обрывы и до 25 м высотой. По внешнему виду это темносерые обломочные породы, состоящие из съементированных обломков эфузивов, от нескольких миллиметров до 1 см в поперечнике. Под микроскопом туфобреции определяются как стекловатые туфобреции. В буров стекле — обломки андезитовых пород с трахитовой структурой. Кроме того, наблюдаются отдельные кристаллы плагиоклаза с слабо вы- раженной зональностью. По углам погасания в разрезах MP плагио- клаз для периферии определяется как № 52, а в центре — № 60. Имеет- ся также отдельные кристаллы авгита, которых CNg=41°, в то время как для кристаллов авгита в обломках андезита CNg=47°. Кроме того, имеются редкие зерна иолилсиса с перекрещивающейся спайностью и мелкие зерна рудных минералов.

Андетизо-базальты имеют мощность до 20 м. Это серые и темносерые породы с редкими и очень мелкими вкрапленниками полевых шпатов и местами с очень мелкими порами. Иногда они имеют тонкую плитчатую горизонталную отдельность, производящую впечатление слоистости. Под микроскопом они имеют основную массу трахитовой структуры, состоящую из ориентированных микролитов плагиоклаза, авгита и редких (более крупных, чем микролиты) кристаллов оливинана, окруженных албитом, в почти прозрачном стекле, с показателем преломления < 1.54. Вкрапленники плагиоклаза и иолилсиса ориентированы удлинением параллельно общему направлению микролитов, причем вкрапленники плагиоклазов слегка зо- нальны. Есть редкие рудные зерна.

В одном из береговых обрастаний до 20 м высотой мы наблюдали, что
между тонкообломочной туфобрецией вверху и андезито-базальтом внизу залегает слой туфогенного песчаника около 2 м мощностью, а под ним, примерно той же мощности, слой мелкого галечника. Песчаник некрепкий, серо-желтый, тонкоплитчато-слоистый. Галечник состоит из окатанных галек до 0.5 см в диаметре. Все эти образования в обнаружении наклон на ЮЗ 205°, угол наклона 10°.

В другом обнаружении, высотой до 10 м, на р. Березовой, близ ее устья, под неживыми тufами залегает среднезернистый, тонкосернистый, некрепкий песчаник, до 1.5 м мощности, с тонким прослойем мелкого галечника в нем, а под песчаником — порицерно-сераз, тонкослоистые, сланцеватые глины. Оба слоя наклон на ЮЗ 255°, /45°. К сожалению, приходится констатировать, что в этом обнаружении не видно места соприкосновения пемзовых туфон с низлежащими осадочными образованиями. Песчаник и глина являются несомненно третичными, на что указывает их сильная дислоцированность.

Упомянутые выше два обнаружения свидетельствуют о том, что среди вулканических образований описываемой толщи залегают и нормальные осадочные отложения. При этом, если неживой туф на низлежащих осадочных образованиях залегает согласно, то все рассмотренные толщи являются третичными и служат основанием палеодолом, если же залегание несогласное, то эта толща — четвертичная и является нижней частью лавового пласта, а основанием его являются третичные отложения, часть которых обнаруживается во втором из вышеуказанных обнаружений. Надо надеяться, что будущие исследователи этот вопрос разрешат.

Средняя часть вулканического комплекса. Сюда мы относим туфы и туфобреции нижней части склонов долины р. Нововой туфы у озера Кронштадского.

Туфобреции и туфы по р. Новой представлены серыми, с красно-бурыми пятнами, среднекрупноблочными породами. Величина остроугольных или округлых, но неправильных по форме обломков породы колеблется в пределах нескольких миллиметров в поперечнике, по кое-где рассеяны обломки от 0.5 до 1 см и менее в поперечнике.

Под микроскопом структура пород типично брекчиевидная. Породы состоят из обломков андезито-базальта, андезита (травертировая структура) и кварца. В бору стекле с флюидальной структурой, кроме обломков различных пород, имеются крупные самостоятельные кристаллы плагиоклаза (№ 52), гиперстена и авгита.

Если не обращать внимания на обломки посторонних пород, то остальная масса породы принадлежит к шлиакам базальтовых лав.

Обломки андезито-базальта состоят из вкраепленников плагиоклаза и авгита. Тонкосернистая основная масса обломков состоит из микролитов плагиоклаза и содержит большое количество рудных зерен. Обломки андезитов с травертиновой структурой состоят из микролитов плагиоклаза, а кварца — из отдельных зерен кварца с роговиковой структурой.

В некоторых случаях туфобрекчи отличаются тем, что в их составе наблюдаются однообразные по текстурному характеру обломки. Принадлежат они андезитам (?) с травертиновой структурой. Кроме того, здесь имеются единичные самостоятельные кристаллы плагиоклаза (№ 52). В стекле этих пород встречаются также мицеллиевые (слабо желтоватые) выплески, в которых, в свою очередь, наблюдаются сфероидальные образования кальцита. Имеются зерна рудных минералов.

У озера Кронштадского описываемые образования представлены исключительно туфонами. Залегают они здесь на основании из размытых и дислоцированных мезовийских (?) туфогенных осадков вулканической овигы.

Туфы здесь звонкие, светлосерые, с неровноплитчатой горизонтальной отдельностью в обнаружениях. Включенные в породу обломки до 2 мм в поперечнике равномерно рассеяны и имеют остроугольные очертания.
Под микроскопом основной фон породы представлен буровато-серым стеклом. В качестве ксенолитовых включений присутствуют мелкие обломки сильно измененных глиноэластических образований. Некоторые различаются отдельные кристаллы плагиоклаза и авгита.

В верхней части вулканического комплекса представлена андезито-базальтами, развитыми в истоках р. Новый, а также в верхней части склонов долины этой реки в ее среднем и верхнем течении. В некоторых случаях это плотные тонкоплитчатые серые эфузивы с редкими выделениями пlesenных шпатов, а в других — тёмносерые, с мелкими и крупными порами эфузивы, также с выделениями пlesenных шпатов.

В обоих случаях эфузивы представляют, повидимому, парную фацию андезито-базальтовых лав. Основная их масса стекловатая, трахитовая, с редкими вкрапленниками плагиоклаза, авгита и магнетита.

Осадочные отложения. К нормальноосадочным отложениям постплющен могут быть отнесены ледниковые отложения, древние аллювиальные отложения и древние морские отложения.

Ледниковые отложения. Ледниковые отложения выделены особо, так как, с одной стороны, они занимают достаточно обширные пространства, а, с другой стороны, их выделение облегчается наличием свойственного им ледникового ландшафта, описанного в главе о геологии и геоморфологии района. Отложения эти представлены песчано-или валунно-галечным материалом подледниковых вод и поддонных морей. Ледниковые отложения в виде флювио-глациальных отложений входят наряду с древними аллювиальными отложениями в состав и древних террас. Состав их очень разнообразен и зависит от состава горных масс, к которым они примыкают.

Древние аллювиальные отложения. Сюда мы относим все речные террасы с отметками от 10—12 м и выше над уровнем воды в реках; эти террасы наряду с древними морскими образованиями входят в состав прибрежных низменностей — Нальчевской и Жнаповской. Представлены эти отложения галечниками, глинистыми песками и песчанистыми глинами, часто с косой силоистостью. Состав их разнообразен и зависит от состава размывавшихся пород.

Еще на основании предыдущих работ мы позволяли себе образование мощной 25—30-метровой террасы параллелизовать по времени с первым большим оледенением Камчатки, а более молодую, несравненно менее мощную, но более постоянную 10—12-метровую надпойменную террасу — со вторым оледенением Камчатки.

Древние морские отложения наравне с древними аллювиальными отложениями входят в состав прибрежных низменностей, представляющих собой незначительно осыпившиеся морские лагуны, и представлены песками и глинами.

Современные отложения

Отложения представлены аллювиальными, береговыми, водноразборными, озерно-лагунными и озерными, а также делювиальными и элювиальными отложениями.

Аллювиальные отложения. Сюда мы относим все отложения речных террас с отметками ниже 10 м, а также отложения современных русел рек и их устьевых частей. Так как большинство рек, особенно в Кронцком районе, находится в стадии интенсивной эрозии, то на некоторых из участках не только не происходит отложений, а, наоборот, наблюдается размыв коренного ложа. К таким рекам относится, например, р. Новая на том ее участке, где она имеет излучину, обращенную выпуклостью к западу. Наибольшее количество этих отложений происходит в нижних течениях рек.
и в их приустьевых частях. Представлены они галечниками, песками и илами. В приустьевых частях рек эти отложения сменяются с прибрежно-морскими, и местами пески здесь настолько обогащены магнетитом, что образуют настоящий магнетитовый песок, как это мы наблюдали на побережье несколько севернее р. Семячка, при устье побочной речушки, берущей начало в предгорьях с. Большой Семячк.

Верховые волноприбойные отложения принимают участие в строении прибрежных низменностей Цалымской и Жукановской, где они слагают береговые косы.

После днекове очень хорошо развиты в виде длинных параллельных гряд, срезанных с 7, на побережьях низменностей; они описаны в главе о морфологии района. Представлены береговые косы мелковершинными песками с красными обломками раковин.

Озерно-лагунные и озерные отложения. Описанные выше береговые волноприбойные отложения дальше, в глубину страны, сменяются озерно-лагунными отложениями, но с значительным участием речных и прибрежно-морских, слаживающих ближайшие к берегу участки прибрежных низменностей. Представлены они песками и прослоями галечников, и глинами или илами.

В прибрежных зарастающих частях озер, например в некоторых местах Семячковского озера-лагуны, существенное участие принимают и скопления отмершего торфобразующего растительного материала.

По берегу озера Кроноцкого эти отложения представлены плохо окатанными гальками эфузивов.

Делювиальные и элювиальные отложения. Делювиальные образования в виде скоплений остроугольных обломков часто широким плеяком развиты у подножия склонов некоторых речных долин и отдельных высот. Элювий, представленный мелко- или крупнообломочным материалом, наблюдался на отдельных оголенных вершинах высот.

ТЕКТОНИКА

В исследованном районе основными тектоническими зонами, морфологически хорошо выраженным, являются: хребет Валагинский, Центральная Камчатская депрессия и зона лавовых плато-долов.

Хребет Валагинский в районе пересечения сложен в основном валагинской [мезозойской (?)] свитой, но среди поля валагинской свиты в центральной части хребта развита и константиновская (хиоценовая) свита. Валагинская свита, из совокупности наблюдений 1986 г. и предыдущих лет, имеет северо-северо-восточное и юго-юго-западное простирание, в общем близкое к направлению хребта Валагинского и следующего за ним к югу хребта Ганальские Востряки, но несколько косо направленное по сравнению с направлениями хребта, а именно: простирание валагинской свиты несколько более приближается к меридиональному направлению. Породы валагинской свиты косое описываемого пересечения имеют в общем антиклинальное строение и осложнены на крыльях второстепенной складчатостью, с амплитудами складок от нескольких метров до нескольких десятков метров; крылья этих второстепенных складок часто, в свою очередь, осложнены мелкой складчатостью или гофрировкой, а иногда и плойчатостью; северное окончание этой антиклинальной структуры, повидимому, осложнено в центральной части синклинальным протибом, выполненным осадками константиновской свиты, падающей на ЮВ 160—175°, под углом в 25—80°.

Примывающие к хребту Валагинскому зоны Центральной Камчатской депрессии и современного лавового плато опустились по сбросам и обусловли, таким образом, горповый характер этого складчатого хребта.
Центральная Камчатская депрессия, как уже описано в главе о геоморфологии района, имеет строение грабена и выполнена горизонтально лежащими четвертичными отложениями.

Зона лавовых плато занята главным образом вулканическими четвертичными образованиями. Это наиболее дислоцированные образования из всех геологических образований района. Поблизости здесь углы падений не превышают 10° и образуются новообразованиями на склонах вулканов, на границе распространения, на которых присутствуют отложения. Но в области развития вулканического постелиноса характерно наличие сбросов, обусловленных выходами на дневную поверхность третичных и более древних отложений. Так, наименьшее количество сбросов, вулканический покров смыт, и на дневную поверхность выходят отложения, так называемый свиты м. Жупановского и южнее, вулканический покров смыт, и на дневную поверхность выходят отложения, так называемый свиты м. Жупановского и константиновской свиты, а еще южнее — пород вулканской свиты. К сожалению, небольшое число обнажений и отсутствие достоянных замеров не позволяют установить характер дислоцированности этих свит. Можно лишь сказать, что отложения вулканских образований на м. Жупановском падают на СВ 75°, с углом падения в 45°. Появление третичных и более древних пород, как упоминалось выше, здесь связано с наличием сбросов. Последние очень хорошо наблюдались на м. Жупановском, где присутствуют сбросы, падающие на ЮЗ 230° с углом в 30°.

Второй аналогичный сброс предлагается на месте контакта константиновской и вулканской свит в верхнем течение р. Вахиль. Этот сброс проходит также через вулкан — с. Жупановской, и им же обусловлено наличие крупных участков юго-западного берега по-ова Шипунского.

НЕКОТОРЫЕ ВУЛКАНЫ КРОНОЦКОГО РАЙОНА

Кронцкий район изобилует вулканами, и некоторые из них были подвергнуты с нашей стороны рекогносцировочному исследованию. Вулканы, появившиеся в схеме нашего изучения, были сочтены Крашенниковым, Улан, Узон и Тауша. Все они являются уже потухшими вулканами, и лишь Узон находится в фумарольной стадии деятельности. На каждом из этих вулканов мы пробыли всего лишь от 1 до 3 дней, поэтому описание их и, особенно, геологическое строение будет приведено весьма схематично. В этом описании мы не включаем с. Узон, так как оно более подробно была обследован и описан Пийном (1933), проработавшим на ней около трех недель. Нашем рассмотрение остальных вулканов с. Крашенникова как наиболее молодой и лучше других сохранившейся.

Сопка Крашенникова

Издал, со стороны озера Кронцкого, сопка производит впечатление конуса с очень пологими склонами внизу и более крутыми вверху, причем верхняя часть его как бы сплющена с боков и имеет широкую, усеченную и слегка наклонную (до 5°) вершину, вытянутую с северо-северо-востока на юго-юго-запад. Основание сопки имеет не менее 25 км в диаметре, а ее относительная высота над этим основанием равна приблизительно 1400 м. С северной стороны ее основание доходит до озера Кронцкого. Таким образом, это — широкая и сравнительно низкая возвышенность.

Весь вулкан состоит как бы из двух усеченных конусов, вложенных один в другой, причем внутренний, более молодой конус, является более высоким и более широким, а внешний является более пологим и низким. Из рассмотрения привлекаемой фиг. 1 видно, что внутренний, более молодой конус вулкана сопки, имеет два самостоятельных кратера и находится внутри довольно широкой кальдеры.
Гребень кальдеры наподобие кольцевого вала окружает внутренний сдвоенный конус вулкана со всех сторон, за исключением его юго-восточного квадранта.

Внутренняя стенка кальдеры является кругой, а местами отвесной, и имеет до 200 и большие метров относительной высоты. Внешние стенки ее очень полого спускаются к лавовому плато и слабо дренированы сухими руслями распадков.

Основание внутреннего сдвоенного конуса вулкана отстоит от основания внутренней стенки кальдеры на 2 км, и это кольцевое пространство между ними представляет в виде горизонтальной поверхности, усеченной верхним вулканическим пряслом и покрытой изливающимися на нее лавовыми потоками.

Если смотреть на внутренний сдвоенный конус с северо-западной части кольцевого вала кальдеры, то северный склон этого конуса имеет уклон в 25°, а южный — в 32°. Максимальная относительная высота внутреннего сдвоенного конуса над его основанием равна 760 м.

Свое восхождение на с. Крашенниковка мы произвели с юго-западной стороны, где она имеет наибольшую высоту, оказывавшуюся равной 1910 м.

(по анероиду) над ур. моря. На вершине внутреннего сдвоенного конуса расположены два прекрасно сохранившихся кратера с почти отвесными стенками. Мы имели возможность обойти и спуститься лишь в южный кратер, размеры которого оказались следующими: диаметр кратера 900 м, глубина, считая от наибольшей точки вулкана на северо-западном краю этого кратера, 140 м. С восточной стороны край кратера несколько разрушен и понижен и имеет всего 70 м высоты. Дно кратера — ровное и горизонтальное от застывшей в нем магмы; восточная часть кратера выполнена снегом, уплотненным до степени фиброго льда.

Северный кратер имеет несколько меньшие размеры; характерно, что внутри этого кратера имеется свой собственный, не поднимающийся выше краев кратера, невысокий конус с небольшими лавовыми потоками, излившимися преимущественно к востоку.

На склонах с. Крашенниковка мы наблюдали два застывших лавовых потоков: один из них излился из южного, а другой — из северного кратера. Вверху, на склонах вулкана, поверхности лавовых потоков вследствие выветривания сплющены или превратились в отдельные глыбы, у основания и внутри кальдеры, где они сравнительно защищены, поверхности этих потоков очень ровны и представляют собой хаотическое нагромождение

Фиг. 1. Сдвоенный конус вулкана Крашенниковка внутри кальдеры. На переднем плане — лавовый поток, изливающийся из северного кратера. Слева виден правильный конус Кронштадтской сопки, справа — вулканический массив Кружилица (зарисовка Э. Н. Лебедевской).
кусков лавы и ее пористых шлаков, находящихся in situ после оставания. Мощность лавовых потоков — около 30 м каждый.

Найболее древние из доступных наблюдению породы с. Крашенницко-ва — туфобрекции анфит-гиперстенового андезита и андезито-базальта, слагающие нижнюю часть северной стенки кальдеры (обр. 608, 605). Более молодыми породами являются анфит-гиперстеновые андезиты, которые слагают стенки кальдеры с западной стороны (обр. 601), а также залегают на туфобрекциях, слагающих верхнюю часть северной стенки кальдеры (обр. 604). Ещё более молодые породы — андезито-базальты, слагающие стенки северного кратера (обр. 608), а также северный конус вулкана и уклоны на две лавовые потоки (обр. 606, 607 и 610); кроме того, андезито-базальты в виде деска, видимого, одновременно по происхождению с лавовыми потоками, обнаружены в северо-восточной стенке кальдеры (обр. 602). К самым новыми породам следует отнести также анфит-гиперстеновый андезит, залегающий в виде лавовой пробки на дне южного кратера вулкана (обр. 609) и совершенно сходный с анфит-гиперстеновым андезитом внутренней стенки кальдеры.

Ниже приведено описание всех этих пород в порядке указанной выше последовательности при их извержении.

Туфобрекции анфит-гиперстеновых андезитов и андезито-базальтов. В обнаружении это — туфобрекции с обломками серых и бордово-коричневых эфузивов, от 0.5 до 0.75 м в поперечнике, с съемом тонкообломочного туфа в 2 м мощности.

Бордово-коричневые эфузивы имеют порфировидные вкрапленники полевых шпатов и определяются как анфит-гиперстеновые андезиты. В шлифах они отличаются высокой степенью кристалличности и почти полным отсутствием микролитовых кристаллов. Плагиоклазовые вкрапленники их относятся к основному лабрадору (угол утасания в зоне \(\pm MP = \pm 38^\circ \)) а плагиоклаз представлен апатитом (угла которого \(CN = 39^\circ \)). В основной массе породы — мелкие зерна оливина.

В некоторых случаях порода сильно хлоритизирована.

Серые эфузивы определяются как андезито-базальты или базальтовые шлифы и во всех сходны с нижеописываемыми андезито-базальтами и шлаками.

**Шлифы из тонкообломочного туфа в сильно пухистой шлаковой породе имеются несколько обломков андезито-базальтовой породы с порфировой структурой и с гранофиититовой основной массой. Вкрапленники вкрапленности связаны с плагиоклазом. Имеются также зерна плагиоклаза, авгита и других тяжелых зерен. Гипертенеза и, может быть, отчасти оливина.

Анфит-гиперстеновые андезиты. Макроскопически — это серые эфузивы с тонкооплитчатой отдельностью (до 1 см толщиной), особенно хорошо выраженной в анфит-гиперстеновых андезитах внутренней стенки кальдеры. Породы имеют порфировидное строение с порфировыми вкрапленниками полевых шпатов, до 1.5 мм в поперечнике.

Под микроскопом имеют типичную гранофититовую микроструктуру основной массы, состоящей из микролитов плагиоклаза (№ 52–55), авгита и гипертенеза.

Фенокристаллы представлены плагиоклазом, в большинстве случаев зональных (ядро № 80 — битовит, периферия № 50 — лабрадор; угол погасаения в зоне \(\pm MP \) для ядра \(=41^\circ \), для периферии \(=28^\circ \)), авгитом и гипертенезом. Агит преобладает над гипертенезом как в основной массе, так и в фенокристаллах. Для авгита \(CN = 42^\circ \). Гипертенез в мелких и более крупных кристаллах имеет разрезы с опалностью, со слабо выраженным плеохроизмом (знак —).

В основной массе много магнетита и стекла, показатель преломления которого меньше 1.54.
Ангезито-базальты. Лишь в обн. 602 это — светлосерые, во всех же остальных случаях темные, а иногда и совершенно черные плутонные или пористые эфузивы. Плотные разности их имеют порфировое строение, с редким или частыми мелкими выделениями полевых шпатов. Пористые же разности имеют переходы к описанным ниже шлаковым породам.

Под микроскопом андезито-базальты имеют трахицитовую основную массу, на фоны которой располагаются фенокристаллы плагиоклаза.

Потокообразное расположение микролитов основной массы совпадает с ориентировкой вкраепленников плагиоклазов. Некоторые из этих пород (№ 606б) близки к породам описанной ниже группы, плагиоклаз, представляющим поверхностные горизонты заверших потоков. У этих пород основная масса приближается к стекловатой, с пузырьстыми сложением и флюидальной (№ 608).

Вкраепленники плагиоклаза андезито-базальта, согласно углу натягивания в зоне MP, принадлежат к № 50 (+28°), и количества их приблизительно в два раза меньше по сравнению с описанными ниже плагиоклазовыми базальтами.

Кроме крупных вкраепленников плагиоклаза, в этих породах имеются и меньшие, в 2—3 и более раза, представленные уплотненным кристалликами, в брусковидных формах, с зональным строением (удлинение по ребру MP).

Их химический состав, на основании измерений на федоровском столике, отвечает 52% Ан.

Цветные малые релики представлены в небольшом количестве моноклиничными и ромбическими пироксенами. Моноклинные пироксены относятся к артин (CNG=44°). Они почти бесцветны, с хорошо выраженной спайностью по (100). Ромбические пироксены принадлежат гиперстену. Последние слегка окрашены в зеленоватый цвет, с розовыми оттенками; нередко образуют двойники по (100).

Основная масса пород описываемой группы состоит из сероватого стекла и микролитов плагиоклаза. Встречаются магнетит и бурные окислы железа.

Плагиоклазовые базальты залегают в виде дасс в юго-западной в северо-западной частях внутренней стопки кальдеры. По отношению к вулкану дайки являются радиальными и имеют мощность до 3 м. Дайка, зарегистрированная нами в обн. 602, ориентирована на ЮЗ 255°, / 80°. Макроскопически порода здесь серого цвета, с редкими и очень мелкими порами и с редкими выделениями полевых шпатов и некоторых других минералов, до 1—2 мм в поперечнике.

Микроструктура породы дас главным образом порфировая. Основная масса имеет гиалолепитовую и часть гипокристаллическую структуру. Порфировые выделения базальтов принадлежат плагиоклазу, достигающему довольно крупных размеров (до 0.5—1 мм в длину). Химический состав вкраепленников плагиоклаза, на основании измерений их на федоровском столике, отвечает основному лабрадору (№ 65).

Нередко такие крупные кристаллы плагиоклаза сдвойникованы по сложному закону (альбито-карбонатные двойники). Обыкновенно перифериче-
ские части фенокристаллов плагиоклаза резорбированы. Имеются (во многих случаях) плагиоклазы с зональным строением.

Плина с фенокристаллами плагиоклаза встречаются сравнительно крупные выделения (шлиф № 602б) моноцлинной ромбокубанской оливины, компактно и уступающее выделениям плагиоклаза. Моноцлинный оливин, судя по углу оптических осей (2 V = +68° и CNg = =88°, относится к группе авгита. Кроме того, в основной массе имеются мелкие зерна ромбовидного ортопироксенна, прилегающие к граниту.

Оченьна масса состоит главным образом из микролитов плагиоклаза и небольшого количества цветных минералов. Плагиоклазовые микролиты цементированы при помощи слюды буроватым стеклом с примесью рудных выделений (магнетит), распределенных довольно равномерно по всему препарatu. Встречаются тонкие иллиты апатита.

Надо отметить, что внутри крупных зерен (фенокристаллов) плагиоклаза имеется в виде включений непрозрачное пылевидное вещество [стекло (?)], которое иногда распределается (в кристаллах с зональным строением) в виде включений, направленных которых совпадает с границами кристаллов.

На периферии более крупных кристаллов ортопироксен наблюдается небольшое реакционные включение (шлиф № 602б).

Цветные минералы (ортопироксен) описываемых пород претерпели незначительные изменения, выражающиеся в частичном выносе желязистых соединений, а более крупные выделения (шлиф № 611) фенокристаллов претерпели частичное раздробление.

Плаковые породы авгит-гипертеновых андезитов всюду имеют бордовый или малиново-красный цвет, в то время как плаковые породы андезито-базальтов — темные, почти черные. Все породы являются мелко- или крупнопористыми, в зависимости от местонахождения по отношению к нижним частям потоков.

Микроскопически состоят из пузьристого, почти непрозрачного, бурого, а в шлиф № 609б — красного стекла, с редкими вкрапленниками плагиоклаза и мелкими зернами авгита. Плагиоклаз плаков, находящихся в крупных выделениях, отвечает в большинстве случаев лабрадору (№ 66—62). В некоторых препаратах (№ 610б, 608с и, в особенности, 610б) наблюдаются микролиты плагиоклаза, ортопироксена, а также более крупные порфировидные кристаллы цветных минералов.

Сочна Унана

Насколько с. Крашенинниковой хорошо сохранилась и имеет в горизонтальных сечениях правильные кольцевые очертания, насколько с. Унана является уже довольно разрушенным вулканом (фиг. 2) и имеет в плане форму восьмиугольной звезды.

Такая внешняя форма вулкана обусловлена наличием глубоких распадков, образовавших водными потоками, стекающими с сочки в радиальных направлениях. Склонами вулкана, включая более пылеватое, по мере приближения к вершине становятся более крутыми. Относительная высота вулкана над его основанием равна приблизительно 1860 м при абс. выс. в 2010 м (по аэрофото). Площадь основания вулкана равна примерно 15 х 18 км.

В центре вулкана имеется кратер, но он сильно разрушен с северо-западной стороны, в западном направлении из него вытекает один из истоков р. Жуанаевой. Свое восхождение на сочку мы начали по распадку с этим истоком и продолжили по южному краю кратера до самой вершины, обраzuющей юго-восточный край кратера. С этой стороны внутренняя стенка кратера скалеста и уходит вниз отвесным обрывом на глубину до 700 м отн. выс.
Вулкан покоятся на основании, сложенном из порфиритов и порфиритовых туфобрекчий и туфогенных пород валахинской свиты, относящейся к гогобе. При этом в одном из расщелин на северном склоне сохи порфирит определяется как палеозойский эфузив типа ангинто-гиперстенового андезита.

В строении самого конуса присутствуют участие пластинохлазыонных базальтов и ангинто-гиперстенового андезита и их туфобрекчис. Более древними из них являются пластинохлазыонные базальты, слагающие нижнюю часть кратера и нижние части склонов вулканов. Ангинто-гиперстеновые андезиты являются более молодыми и слагают верхнюю часть кратера и верхнюю часть склонов.

При извержениях вулкана происходили и массовые выбросы вулканического материала. Но теперь это крепко сцепленные туфобрекчики, чередующиеся с аллохтонными эфузивами. Туфобрекчики, связанные с пластинохлазовыми базальтами, состоит из обломков пластинохлазового базальта, в то время как туфобрекчики, связанные с ангинто-гиперстеновыми

Фиг. 2. Вулкан Умана (с перевала из источников р. Правой Щучини и Кронцкую речку) (зеренсак Э. Н. Лесючевской).

андезитами, состоят из обломков и тех и других пород. Туфобрекчики представлены обломками эфузивов от нескольких до 10—15 см и больше в порядке.

Низне мы дадим петрографическое описание лишь пластинохлазовых базальтов и ангинто-гиперстеновых андезитов, так как петрографический характер туфобрекчий аналогичен одноименным с ним эфузивам.

Пластинохлазовые базальты. Макроскопически это серые или лизовано-серые эфузивы, имеющие мелкопорфировое строение.

Под микроскопом они во многом аналогичны пластинохлазовым базальтам вулкана Крашенникового. Пластинохлазовые базальты вулкана Умана являются представителями мелкопорфировых лав. Основная масса гиалопилитовая. Фенокристаллы представлены пластинохлазом, слабо окисленными чаще по альббитовому закону. Химический состав их на основании угла угасания в зоне θ MP=35°, соответствует 65% An.

На ряду с вкраеплециями пластинохлаза присутствуют вкраепленники оливины (редко гораздо меньше размеров), ромбоического призмалона (оптически положительного) — гиперстена (слабо плеохроирующего в розовых тонах) и моналинилиого призмала — авгита, у которого CNg=47°.

Крупные кристаллы пластинохлаза почти всегда содержат обильное количество включений стекла, которое распределяется соответственно зональности, т. е. в зоне более основного пластинохлаза. Количество стекла иное, нежели в зоне более кислого состава, и т. п. Иногда только середина зоны выполнена в виде кольца стекловатым материалом.
Бисиликатная составная часть фенокристаллов (авгит, гиперстен) подвергнута значительному измельчению — разложению, в результате чего освободившиеся окислы железа придают породе в проходящем свете ржаво-бурую и коричневую окраску. В большинстве случаев такого рода окраска обусловливается цветом самого стекла.

В гиалопилитовой основной массе находятся мелкие кристаллы (микролиты) плagiоклаза, авгита, гиперстена, реже — оливина и рудных (магнетит), изредка встречается апатит. Микролиты плагиоклаза, судя по углу погасания, относятся к лабрадору (№ 60). Авгит основной массы представлен в виде мелких, удлиненных по осям с кристаллов, у которых $\text{CNg}=46^\circ$. Оливин плагиоклазовых базалтов, находящийся в основной массе, до известна разложен и превращен в агрегат хлоритово-железистого материала.

Ромбические пироксены в основной массе переполны ржаво-бурыми окислями железа; у авгита аналогичные вторичные железистые продукты имеются только с периферий зерен (шлиф № 579а).

В мелких аэриях авгита при большом увеличении видна структура пелючных часов (шлиф № 583). Иногда бисиликатная составная часть породы принадлежит почти одному авгиту (шлиф № 577), и эти породы по структурно-минералогическому признаку могут быть отнесены к переходной группе (и промежуточной) — к андезито-базальтам или даже к авгитовым андезитам.

А в г и т о - г и п е р с т е н о в ы е а н д е з и ты. По внешнему виду — это линзовато-розовые или светлосерые, более крупноориентированные сравнительно с предыдущими породы. Иногда они, как, например, в обн. 86, являются как бы слоистыми, причем слоистость обусловлена чередованием полос, от нескольких микрометров до нескольких сантиметров толщиной, серых и линзовато-коричневатых эффузивов.

В отличие от пород этого же измельчения с вулканом Крапанником, породы с. Утана в шлифах обладают большей степенью кристалличности и более крупноориентированными. Основная масса гиалопилитовая, перекрытая стеклом бурого цвета и рудными выделениями. Вулканики представлены плагиоклазом, с хорошо выраженной полисинтетической спираклиною в одном направлении или же в двух взаимно перпендикулярных. Очень часто зональные. Химический состав плагиоклазов отвечает в большинстве случаев, судя по углу утасания, лабрадору (№ 55—60).

Плагиоклазы, находящиеся в основной массе (микролиты), количественно превосходят все другие минералы (пироксены). Следует отметить, что в породах этой группы вулкана Утана стекловатый бокс (буроватое стекло) занимает значительное место основной массы. В ней (в основной массе) распределены более или менее равномерно, кроме микролитов плагиоклаза, и авгит, меньше — гиперстен и очень редко — оливин. Кроме того, присутствуют магнетит и ржаво-бурые, коричневатые окислы железа. Разложению с выносом железа подвергнут главным образом оливин, который распадается на габитус кристаллов и по реликтовым неизмененным (сохранившимися) участкам.

Для авгита (вулканов Крапанник) $\text{CNg}=41^\circ$. Для стекла $N<1,54$. Для порфировых плагиоклазов — угол погасания в зоне $\perp MP=+89^\circ$, PL № 75.

Сопка Таушниц

К сожалению, погода не благоприятствовала нам при поездке к этой сопке. Даже во время восхождения на нее, достигнув наиболее пониженной части кратера со стороны Уозона, мы оказались в таком густом тумане, что видимость сократилась до нескольких метров. По апериоду это была высота в 2190 м. Ветер, разорвавший облака, дал нам возможность на не-
сколько мгновений увидеть вершину, образующую юго-западный край края: до нее оставалось 150—200 м. Таким образом, это наиболее высокий из трех описываемых нами вулканов. В то же время он является и самым древним из них, так как на его северо-восточном склоне мы наблюдали ледниковый мезорельеф, образовавший беспорядочно рассеянными буграми и бесточными впадинами (фиг. 3).

Находится этот вулкан в 13—14 км от с. Унана и примерно в таком же расстоянии от Узона, по склонам, обращенным друг к другу между Таунницем и Узоном, образуют узкую седловину, а между Таунницем и Унана— пологую и плоскую. По внешнему виду и строению с. Таунниц ближе всего к Унана. Так же как на Унана, на с. Таунниц наиболее разрушенной является северо-западная часть края. Но с. Таунниц имеет и существенные отличия: во-первых, склоны вулкана имеют два больших уступа, представляющих, понятному, край застывших лавовых потоков и, во-вторых, на юго-восточном склоне с. Таунниц имеется большой побочный конус.

Фиг. 3. Общий вид вулканов Таунниц (слева) и Унана (справа) с вулкана Кращенниковского (зарисовка Э. Н. Лемюсевской).

Основание этого конуса располагается в верхней части нижней половины склона вулкана. Побочный конус имеет около 2100 м. выс и около 235 м отн. выс., считая от седловины между ним и главным конусом, причем его юго-восточный склон падает под углом 26°, а северо-западный — под углом 32° (фиг. 4).

Ни каких других пород, кроме авгито-гиперстеновых андезитов и их шпатов, на с. Таунниц мы не обнаружили.

А в г и т о - г и п е р с т е н о в ы е а н д е з и т ы. Макроскопически это светло- или темносерые породы, иногда с слабым желтоватым оттенком. Породы имеют порфировое строение, причем порфировые вкрапления полевых шпатов — то частые и везде, то более редкие и более крупные.

Под микроскопом фенокристаллы принадлежат платиоклазу (в большинстве зональному), авгиту и гиперстену. Платиоклаз вкрапленников принадлежит основному лабрадору, а ядра зональных платиоклазов — биотиту (№ 70—75). Крупные кристаллы платиоклазов с периферии слегка резорбированы, а центральные части (ядра), принадлежащие чаще биотиту, заполнены частями вторичными продуктами, а частью пылевидными включениями непрозрачного вещества [стекло (?)].

1 Об этих уступах пишет и Датмар, обогнувший с. Таунниц с северной стороны.
Большинство кристаллов ромбического пироксена переполнено охристыми наночками (лимонит), тогда как зерна авгита этими продуктами окаймляются только с периферии. Для авгита \(\text{CN}_g = 38 - 40^\circ \). В некоторых шлифах наблюдается большое количество рудных зерен.

В большинстве шлифов наблюдается более вкрапленников ромбического и моноклинного пироксенов, цеолиты плагиклазовых вкрапленников. Последние достаточно глубоко затронули процессы гидролитического разложения, и эти породы иногда с полным правом могут быть отнесены к авгито-гиперстеповым порфиритам.

Породы этой группы отличаются от таковых групп с сопоч Упача и Крапиншинова тем, что здесь не выражена так отчетливо трахитовая структура. Это порфiritовый тип лав.

Плаковые породы. Обычно это темные, почти черные или лиловато-розоватые породы, иногда с включением обломков ранее плавшихся лав.

Фиг. 4. Вулкан Тауншид с побочным конусом (слева) (предисловка Э. Н. Лесючевской).

Петрографически иногда они представляют типы промежуточные, в которых еще много порфировых образований плагиоклаза, авгита и гиперстена, но основная их масса стекловато-пузьристая, буро-коричневого цвета.

ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ РАЙОНА

Полезными искаопаемыми описывающего района являются пемза, вулканические туфы, минеральные источники и магнитит.

Пемза. По берегу Кронштадского залива, близ устья р. Семячка, как к югу от нее, так и к северу, среди постепенно грунтовых вулканических образований наблюдается несколько пластов пемзовых туфов. Пласти пемзовых туфов достигают нескольких метров мощности, но наибольшей мощности они достигают к северу от устья р. Семячка, где слагают так называемые Толоконные горы, имеющие высоту до 20—25 м. Эти пемзоподобные сооружения образуют здесь на протяжении до 15 км обрывы морского берега и состоят из скопления обычно окатанных, слабо спементированных кусков пемзы самого разнообразного размера, до валунов в 0.5 м в поперечнике. Отдельные
ние куски пемзы имеют различную окраску в виде серовато-бело го, лиловато-розового, лиловато-серого, желто-серого и бурого — от самого темного до самого светлого. Цвета отличаются насыщенностью: более темные куски пемзы имеют более насыщенный цвет, а более светлые — более бледный.

Разнообразие величины и формы кусков пемзы находится в зависимости от природы породы минералов. Они могут быть крупными или мелкими, однородными или гетерогенными. Встречаются куски пемзы размером до 1 м и более. Наиболее крупные куски пемзы встречаются в породах, содержащих мелкозернистые минералы — кварц, альбит, гипертензия.

Большая мощность пемзовых образований и занимаемая ими значительная площадь (в некоторых случаях до 100 км²) создает крупные размеры породы. Мощность породы может достигать 20—25 м.

По внешнему виду это темносерые обломочные породы, состоящие из сгустившихся обломков, от нескольких миллиметров до 1 см, эфузивов, притем цементом часто служит вулканическое стекло. Сплошь и рядом в обломках эти породы разбиты вертикальными и горизонтальными трещинами, что создает отличные условия для постепенного разрушения породы. Как и все другие образования, пемза отличается хорошим обрывом до 1,5 м по верху, что позволяет наблюдать ее форму и структуру в поперечном сечении.

Для выяснения качества этих пород и промышленного значения их месторождений требуется постановка специальных исследований.

Минеральные источники в описываемом районе имеют в кальдере вулкана Узон (Узоновские горячие источники и фумаролы), на поверхности плато между вулканами Таушинцем и Улан (Таушинцевские горячие источники), несколько групп их располагаются у подошвы южного склона вулканического массива Большой Семяк (Нижнесемячинские горячие источники) и одна группа — на западном склоне того же массива (Верхнесемячинские горячие источники). Кроме того, близ описываемого нами маршрута имеются источники и в западной части вулкана Кихинич. Но из всех этих источников мы видели лишь Узоновские. Остальных же источников мы не видели, так как они были за краями землях. Искать их не стремились, так как наступила уже глубокая осень и нам предстояло еще длиний путь до Петропавловска.

Все эти источники с той или иной степенью детальной описал Пиц (1927), специально занимавшийся изучением некоторых из них.

Магнетит. Мы упомянули, что на морском берегу, севернее р. Семяк, современные аллювиальные и прибрежно-морские пески сильно обогащены магнетитом. Местами это обогащение настолько велико, что песок представляет почти чистым магнетитом. Обогащение песка магнетитом объясняется вымыванием его из эфузивов, сражающих предгорь и вулкан Большой Семяк. Никакого практического значения вследствие незначительности своих размеров это месторождение не имеет.

Литература

Грешикн Л. А. Геологический очерк восточного побережья Камчатки. — Тр. НГРИ, сер. А, вып. 72, 1935.

Джутчер К. Поселки и пребывание в Камчатке в 1851—1855 гг., ч. 1, СПб, 1901.
Келль И. Г. и Конради С. А. Геологический отдел Камчатской экспедиции 1908—1911 гг. — Изв. Русск. геогр. об-ва, VII, в. 1, 1925.
Комаров В. Л. Путешествие по Камчатке в 1908—1909 гг. Камчатская экспедиция Ф. Н. Рыбушкинского. Ботанический отдел, вып. 1, М. 1912.
Конради С. А. Краткий предварительный отчет о работах партии Геологического отдела Камчатской экспедиции Ф. Н. Рыбушкинского 1908—1909 гг., СПб, 1911 (оттиск из Изв. Русск. геогр. об-ва).
Криптов Ф. В. Г. Геологический обзор стран Дальнего Востока. — Георгредат., 1932.
Обручев В. А. Очерки в-на Камчатки по данным Карла Дитмара. — Изв. Вост.-Сиб. отд. Геогр. обн., т. XXIII, № 6, 1892.
Пийн В. И. Кальдера — вулкан Уэби на Камчатке. (Фонд ЦНИГРИ, 1933.)
Пийн В. И. Термальные купели Камчатки. — СОИС АН СССР, сер. Камчатская, в. 2, 1937.
Щербаков А. В. Два геологических пересечения полуострова Камчатки. — СОИС АН СССР, сер. Камчатская, в. 5, 1938.
D i t t m a n n C. v. Ein Paar erlauternde Worte zur geognostischen Karte Kamtschatka's. — Melanges physiques et chimiques, 1855.
СОДЕРЖАНИЕ

Д. С. Харненич. Геолого-петрографический очерк о. Карагинском 3

А. В. Щербаков. Маршрутические геологические исследования в Карагинском районе на Камчатке .. 33

А. В. Щербаков. Геологические исследования по маршруту село Кирганик — село Калахтырка .. 55

Подписано к печати 11.IV 1941 г. РИСО № 1591—625. А36489. Объем 84, печ. л. 6,81 уп.-изд. л. Тираж 800 экз. Цена книги 5 руб. 50 коп.

1-я Объединенная типография Отдела РОСФР треста «Полиграфсинтез». Москва, Валовая, 28. Заказ № 4720.