УДК 53.082:539.32:550.832.9:556.34.042

Опыт регистрации вариаций уровня и физико-химических параметров подземных вод в пьезометрических скважинах, вызванных сильными землетрясениями (на примере Камчатки)

© 2016 г. Г.Н. Копылова, С.В. Болдина, А.А. Смирнов, Е.Г. Чубарова

Камчатский филиал Федерального исследовательского центра "Единая Геофизическая служба РАН", г. Петропавловск-Камчатский, Россия

Дано описание аппаратурного комплекса для регистрации уровня, температуры, электропроводности подземной воды в скважинах и метеорологических параметров (атмосферное давление, температура воздуха) с периодичностью измерений от 5 мин до 1 ч производства ООО "Полином", г. Хабаровск. Оборудование установлено на скважинах Камчатки и используется в течение нескольких лет для регистрации изменений параметров подземных вод, вызванных землетрясениями. С использованием этой аппаратуры в скважинах ЮЗ-5 и E-1 зарегистрированы разнообразные вариации измеряемых параметров подземных вод в связи с сильными землетрясениями 2013 г., произошедшими 28 февраля, M_W =6.8 и 24 мая, M_W =8.3. Приводятся описание зарегистрированных вариаций и их систематизация с учетом механизмов сейсмического воздействия на состояние системы "скважина – водовмещающая порода".

Ключевые слова: скважина, уровень воды, электропроводность, аппаратурный комплекс, землетрясение, Камчатка.

PACS: 91.30.Px

Введение

Сильные землетрясения могут сопровождаться разнообразными вариациями уровней, температуры и химического состава поземных вод в скважинах. В работах [Копылова, 2006, 2010] такие изменения названы гидрогеосейсмическими вариациями и показано, что особенности их проявления определяются различными сейсмическими воздействиями на состояние системы "скважина – водовмещающая порода".

Изменения статического поля напряжений при образовании разрывов в очагах землетрясений и соответствующие вариации напряженно-деформированного состояния водовмещающих пород проявляются в косейсмических скачках повышения или понижения уровня воды в течение первых минут после вступления сейсмических волн. Динамическая деформация водовмещающих пород и сотрясения ствола скважины при прохождении сейсмических волн от сильных землетрясений также могут сопровождаться разнообразными ко- и постсейсмическими эффектами в изменениях уровней и химического состава подземных вод. Описание таких эффектов приводится в многочисленных работах, например в [Копылова, 2001, 2006; Копылова и др., 1994; Wang, Manga, 2010]. При их изучении основное внимание исследователей уделяется объяснению гидрогеодинамических и гидрогеохимических процессов их формирования и общей оценке воздействия сильных землетрясений на состояние флюидонасыщенной геологической среды.

При проведении наблюдений в скважинах Камчатки и других сейсмоактивных регионов особый научный и практический интерес представляют изменения в состоянии подземных вод, проявляющиеся перед сильными землетрясениями (или гидрогеологические предвестники), в связи с возможностью их использования для прогнозирования сильных землетрясений и уточнения времени таких событий [*Копылова*, 2001, 2006а,б, 2010; *Копылова, Болдина*, 2012; *Копылова и др.*, 1994; *Wang, Manga*, 2010].

Камчатским филиалом Федерального исследовательского центра "Единая Геофизическая служба РАН" (КФ ФИЦ ЕГС РАН) проводятся наблюдения в скважинах за изменениями физико-химических параметров подземных вод с целью поиска предвестников землетрясений и других эффектов сейсмичности. При использовании данных наблюдений в скважинах в сейсмопрогностических целях и для обеспечения надежной регистрации эффектов от сейсмических волн необходимо применять надежную прецизионную измерительную аппаратуру, позволяющую проводить мониторинг в полевых условиях в режиме, близком к реальному времени. В КФ ФИЦ ЕГС РАН при проведении наблюдений в пьезометрических скважинах используются аппаратурные комплексы, созданные в ООО "Полином", г. Хабаровск, обеспечивающие синхронные измерения уровня, температуры и электропроводности воды, а также метеорологических параметров – атмосферного давления и температуры воздуха, с периодичностью опроса от 5 мин до одного часа [*Калинов и др.*, 2012].

В настоящей работе с использованием опубликованных материалов [Калинов и dp., 2000, 2012; Римлянд и dp., 2000] приводятся технические характеристики основных элементов измерительного комплекса, а также примеры гидрогеосейсмических вариаций уровня, температуры и электропроводности воды, зарегистрированные в скважинах ЮЗ-5 (глубина 800 м, уровень на глубине 1 м ниже оголовка) и Е-1 (глубина 665 м, уровень на глубине 27 м) в связи с сильными землетрясениями, произошедшими в 2013 г. 28 марта, M_W =6.8 и 24 мая, M_W =8.3 (рис. 1, таблица). Данные о строении скважин и локальных гидрогеологических условиях приводятся в [Копылова, 2001, 2006а], а также на сайте КФ ФИЦ ЕГС РАН по адресам http://emsd.ru/lgi/places/e1 и http://emsd.ru/lgi/places/uz5.

Измерения гидрогеологических и метеорологических параметров проводятся с интервалом 5 мин. Передача данных в КФ ФИЦ ЕГС РАН осуществляется один раз в час, обработка данных проводится в лаборатории геофизических исследований КФ ФИЦ ЕГС РАН ежедневно. Результаты обработки в виде графиков временных рядов изменений уровня воды (исходных и очищенных от влияния факторов-помех) представляются ежедневно на сайте КФ ФИЦ ЕГС РАН по адресу http://emsd.ru/lgi/observations.

Гипоцентр						Энергетический класс/магнитуда						
Дата дд.мм.гггг	Время чч:мм:сс	с.ш.	В.Д.	<i>Н</i> , км	КФ ФИЦ ЕГС РАН			Global CMT	NEIC (USGS)		<i>R</i> , км	Балл MSK- 64
					K_S	ML	M_C	M_W	mb	M_W		04
28.02.2013 г.	14:05:48	50.67	157.77	61	15.2	6.9	6.6	6.8	6.4	6.9	265	4–5
24.05.2013 г.	05:44:47	54.76	153.79	630	17.0	7.8	8.3	8.3	7.5	8.3	370	4–5

Параметры сильных камчатских землетрясений 2013 г. [Сильные..., 2014]

Рис. 1. Схемы размещения наблюдательных скважин и эпицентров сильных землетрясений 2013 г. (таблица) (*a*); строения скважин ЮЗ-5 (*б*) и Е-1 (*в*) с характеристикой водовмещающих пород. *I* – скважина; *2* – эпицентр землетрясения

Аппаратура

В 2013 г. наблюдения на скважинах ЮЗ-5 и Е-1 проводились с использованием аппаратурного комплекса Кедр-ДМ-У (ООО "Полином", г. Хабаровск) с телеметрической передачей данных в КФ ФИЦ ЕГС РАН по каналам сотовой связи общего пользования [Кедр ДМ..., 2007; *Калинов и др.*, 2012].

В состав Кедр-ДМ-У входят высокочувствительный ультразвуковой датчик уровня воды (уровнемер), позволяющий регистрировать изменения уровня воды с точностью ±0.1 мм, и глубинный зонд для измерений электропроводности и температуры подземной воды. Датчики атмосферного давления и температуры воздуха входят в состав блока регистрации БСИ 300, который устанавливается над оголовком скважины. Схема установки измерительного комплекса на скважинах приводится на рис. 2.

Рис. 2. Компоненты измерительного комплекса Кедр-ДМ-У и схема его установки в скважине: a – регистратор БСИ 300 с подключенной GSM – антенной; δ – ультразвуковой уровнемер с преобразователем; В – схема установки оборудования в скважине: I – БСИ 300 – блок сбора информации, включающий датчики атмосферного давления и температуры воздуха; 2 – ультразвуковой датчик уровня воды; 3 – глубинный зонд, оборудованный датчиками температуры и электропроводности воды; c – железобетонное защитное сооружение над оголовком скважины; ∂ – оголовок скважины E-1

Основным блоком измерительного комплекса является система регистрации уровня воды в стволе скважины. В КФ ФИЦ ЕГС РАН для уровнемерных наблюдений использовались модификации Кедр-А2-У и Кедр-ДМ-У, в которых измерения уровня воды осуществляются ультразвуковым уровнемером (рис. 2, б, в). Индексы А и ДМ

обозначают способы хранения и передачи информации с наблюдательных скважин. В Кедр-А2 результаты измерений хранятся в переносном модуле энергонезависимой памяти; передача информации выполняется посредством смены накопителя данных. Кедр-ДМ имеет телеметрический канал на основе сотовой или спутниковой связи.

Ультразвуковой скважинный уровнемер [Калинов и др., 2000, 2012; Римлянд и др., 2000]. Метод определения уровня воды основывается на измерении времени распространения ультразвукового импульса (УЗИ) в вертикальном звукопроводе. Звукопровод представляет собой тонкий металлический стержень. При этом УЗИ формируется непосредственно на границе раздела жидкость-воздух [Калинов и др., 2000].

Скважинный уровнемер (рис. 2, δ , s) состоит из корпуса, представленного защитной трубой диаметром 51 мм и длиной до 3 м; вертикального стержня-звукопровода, натянутого в центре трубы; поплавка-излучателя УЗИ, коаксиально охватывающего стержень и свободно перемещающегося вдоль него; блока питания, синхронизации и приема УЗИ, укрепленного на верхнем конце стержня; эталонного излучателя УЗИ, укрепленного на нижнем конце стержня. Уровнемер опускается на специальном тросе в скважину. На поверхности земли над оголовком скважины расположен блок сбора информации БСИ (логгер) (рис. 2, a, s), связь с которым осуществляется по кабелю.

Возбуждение УЗИ производится пьезокерамикой в виде кольца, коаксиально охватывающего звукопровод. На пьезокерамику синхронно с запуском счетчика времени подается электрический импульс, который вырабатывается специальной электронной схемой, расположенной в поплавке. Для подачи питания и обеспечения синхронизации процесса излучения акустического импульса была разработана специальная система на основе индукционного метода [*Калинов и др.*, 2000, 2012]. В качестве первичного витка трансформатора используются металлический стержень – звукопровод и защитная труба. Вторичная обмотка трансформатора расположена внутри корпуса поплавка.

Индуцированный сигнал разделяется во времени на сигнал питания, обеспечивающий зарядку накопительного конденсатора, и импульс синхронизации. Включение питания излучателя происходит с задержкой по времени по отношению к сигналу зарядки и длится 100 мкс.

На рис. 3, *а* представлена функциональная схема питания и синхронизации ультразвукового излучателя [*Калинов и др.*, 2012]. Блоки *1–3* расположены на неподвижном основании, блоки *4–11* – внутри поплавка.

Рис. 3. Функциональная схема скважинного уровнемера по [*Калинов и др.,* 2012]: *а* – акустического излучателя; *б* – приема акустических сигналов (пояснения см. в тексте)

Микропроцессор *1* формирует необходимые для работы сигналы. На вход смесителя *2* поступают сигналы частоты зарядки и синхронизации. Выход смесителя *2* под-

СЕЙСМИЧЕСКИЕ ПРИБОРЫ. 2016. Том 52. № 4

ключен к понижающему трансформатору 3. Вторичная обмотка трансформатора питания 4 и конденсатор C_{pe3} образуют резонансный контур, что позволяет получить высокое напряжение на выходе детектора напряжения 6. Зарядка накопительных конденсаторов блока 6 производится в течение 20 мс током частотой 16 кГц. Микропроцессор вырабатывает импульс синхронизации (СИ) через определенное время после окончания видеоимпульса частоты зарядки (рис. 3). После прекращения сигнала зарядки, определяемого нормированной задержкой, схема 7 (рис. 3, *a*) вырабатывает строб-импульс длительностью 0.1 мс. Во время его действия блок 9 обеспечивает питание сдвоенного фазового обнаружителя синхроимпульса 8 и блока 10, формирующего электрический импульс для возбуждения пьезокерамики 11. Фазовый обнаружитель 8 регистрирует первый переход напряжения СИ через нулевой уровень. При этом момент начала формирования акустического импульса не зависит от амплитуды СИ и параметров первичного витка. Конструкция и работа фазового обнаружителя представлена в работе [*Kалинов и др.*, 2009]. Электронная схема поплавка, включая трансформаторы питания и синхронизации, размещается на печатной плате диаметром 31 мм, весом 7.5 г.

Основными факторами, влияющими на работу уровнемера, являются точность регистрации момента прихода УЗИ и измерение времени его распространения. На рис. 3, δ представлена функциональная схема блока приема и измерения времени прихода УЗИ. При перемещении акустического излучателя (поплавка) вдоль волновода амплитуда и форма переднего фронта акустического сигнала существенно изменяются. В уровнемерах Кедр-А2-У и Кедр-ДМ-У реализован фазовый способ регистрации УЗИ, работа которого аналогична регистрации СИ поплавком-излучателем [Калинов и др., 2009]. Началом отсчета для времени распространения УЗИ от излучателя до приемника является СИ, запускающий генератор УЗИ в поплавке. УЗИ, сформированный излучателем, распространяется по стержню волновода и поступает на пьезоприемник *1* (рис. 3, δ) и далее на вход малошумящего усилителя 2. Элементы *1* и 2 конструктивно совмещены и установлены на торце волновода. Далее сигнал проходит через ФВЧ 2-го порядка 3, усилитель 4 и ограничитель амплитуды 5. Блок схемы 6 обеспечивают фазовый прием первой полуволны импульса. На выходе схемы 6 формируется импульс, который оцифровывается счетчиком 7. Микропроцессор 8 считывает состояние счетчика.

После окончания измерительного импульса микропроцессор вычисляет расстояние от излучателя до преобразователя. При работе схемы учитывается соотношение сигнал/шум [Калинов и др., 2009]. Это делается с помощью детектора шума 9 и пикового детектора 10. Посредством встроенного интерфейса RS 485 (11) данные по линии связи передаются в микропроцессор блока сбора информации.

На точность измерения уровня воды влияют температура, линейное расширение металлического волновода, дрейф частоты кварцевого генератора и пр. С целью исключения помех используется метод измерения уровня с встроенной автоматической калибровкой [*Калинов и др.*, 2000, 2012].

Ультразвуковой скважинный уровнемер имеет следующие метрологические характеристики: диапазон измерения уровня – до 3 м; разрешающая способность датчика уровня – 0.1 мм; основная погрешность измерения уровня – 0.5 %; рабочий диапазон температур –0...+80 °C; габаритные размеры – 51х3180 мм; масса – 3.5 кг.

Глубоководный зонд [Калинов и др., 2000, 2012]. Вариации температуры и электропроводности воды, измеряемые в стволе пьезометрической скважины, характеризуют физико-химическое состояние подземных вод. Для их измерения используется глубоководный измерительный зонд, который устанавливается в стволе скважины в диапазоне глубин 10–200 м от поверхности земли. В скв. ЮЗ-5 зонд находился на глубине 97 м ниже оголовка, в скв. Е-1 – на глубине 20 м. На рис. 4 представлены функциональная схема зонда (*a*) и конструкция датчика электропроводности (б) [Калинов и др., 2012].

Рис. 4. Глубоководный зонд: *а* – блок-схема; *б* – конструкция датчика электропроводности (по-яснения см. в тексте)

В качестве датчика температуры (1 на рис. 4, a) используется платиновое сопротивление Platinum RTDs 1000, подключенное к АЦП (2). В качестве АЦП используется 16-разрядный малошумящий сигма-дельта преобразователь с дифференциальным входом AD7788. Управление устройством выполняется встроенным микропроцессором 3средствами SPI-интерфейса. Расчет температуры производится микропроцессором по специальному алгоритму с погрешностью не более 0.5 %.

Датчик электропроводности основан на индукционном способе и представляет собой систему двух соосно расположенных тороидальных катушек индуктивности (4 и 5 на рис. 4, δ), охваченных общей петлей связи в виде элементов корпуса датчика 10 и жидкостного проводника контролируемой водной среды. Для повышения электрической чувствительности и снижения электрических помех, обусловленных индуктивными и емкостными связями, приемная катушка находится в незамкнутом экране. Генератор 6 подает переменное напряжение амплитудой 10 В на излучающую катушку 5. Электромагнитное поле вихревых токов возбуждает в приемной катушке 4 ЭДС с величиной? пропорциональной электропроводности жидкости, в которую погружен датчик. ЭДС с катушки поступает на усилитель 7, детектор 8 и через АЦП 9 – на микропроцессор. Схема формирует постоянное напряжение, которое прямо пропорционально электропроводности в диапазоне от 10 мВ до 3.3 В. У датчика проводимости фактически отсутствуют электроды и электрический контакт с жидкостью, что позволяет использовать его в полевых условиях и на больших глубинах. Оцифрованные значения температуры и проводимости по запросу передаются в блок сбора информации.

Блок сбора информации. Центральным узлом измерительного комплекса является блок сбора информации (БСИ), который представляет собой специализированный регистратор данных (логгер), расположенный на поверхности над оголовком скважины (рис. 2, *a*, *в*). Программное управление логгером и специализированными датчиками осуществляется микропроцессором серии AVR типа ATMEGA128.

В исходном состоянии микропроцессор БСИ всегда находится в "спящем" режиме и потребляет от источника напряжением +12 В не более 70 мкА. При воздействии сигналов от кнопок управления выносного индикатора или от минутных импульсов встроенных часов процессор активизируется. Логгер производит опрос измерительных датчиков, заносит результаты в накопитель данных, осуществляет сеансы связи и переходит в режим пониженного энергопотребления. Информация с уровнемера, датчиков электропроводности и температуры воды по специальному кабелю (интерфейс RS 485) передается на микропроцессор БСИ. Температура воздуха и атмосферное давление измеряются датчиками, установленными на плате БСИ и подключенными к его микропроцессору. Опрос всех датчиков может производиться с заданной периодичностью от 5 минут до 1 часа.

Микропроцессор БСИ контролирует напряжение батареи питания и токи потребления в измерительных каналах с помощью встроенных АЦП. БСИ обеспечивает минимизацию электропотребления всеми устройствами и защиту от короткого замыкания в измерительных каналах. В КФ ФИЦ ЕГС РАН информация с измерительных станций Кедр-ДМ передается по каналам сотовой связи. Управление модемами осуществляет микропроцессор средствами интерфейса RS 232 (конвертор UART – RS 232). Для сотовой связи применяются модемы TC65 (Terminal фирмы Siemens), которые работают в диапазоне GSM 850/900/1800/1900 МГц. Пакетная передача данных осуществляется с использованием модема с встроенными средствами GPRS. Передача информации осуществляется один раз в час.

Результаты наблюдений

Начало наблюдений с использованием описанных выше технических средств на скв. ЮЗ-5 – 23.09.2010 г., на скв. Е-1 – 15.09.2011 г. Интервал измерения параметров составлял 5 мин; передача данных в КФ ФИЦ ЕГС РАН осуществлялась один раз в час по каналам сотовой связи.

Описание методики обработки данных уровнемерных наблюдений для выделения вариаций уровня воды, связанных с влиянием сейсмичности (гидрогеосейсмических вариаций), приводится в [*Konылова и др.*, 2007], а также в других публикациях авторов (см. http://emsd.ru/lgi/result/hydro). Обработка данных проводилась ежедневно, что позволяло диагностировать гидрогеосейсмические вариации параметров режима подземных вод в режиме близком к реальному времени.

В 2013 г. на Камчатке произошла серия сильных землетрясений с магнитудами 6 и более [Сильные..., 2014]. Наиболее значительными событиями были землетрясение 28 февраля, M_w =6.8, произошедшее в акватории Тихого океана, и мантийное землетрясение магнитудой M_w =8.3 24 мая в Охотском море (см. рис. 1, таблица). В результате этих землетрясений были зарегистрированы разнообразные изменения уровня и физи-ко-химических параметров подземных вод в режиме, близком к реальному времени [Сильные..., 2014].

На рис. 5 представлены изменения уровня, температуры и электропроводности воды в скважине ЮЗ-5 в январе-июле 2013 г., в том числе краткосрочные гидрогеосейсмические вариации уровня воды (рис. 5, δ , ϵ), вызванные сильными землетрясениями (см. таблицу) и зарегистрированные с использованием представленного выше измерительного комплекса.

После вступления сейсмических волн от землетрясения 28 февраля в течение 45 мин происходило повышение уровня с амплитудой 2.2 см (рис. 5, *б*). После землетрясения 24 мая наблюдалось повышение уровня в течение 20 мин с амплитудой 7.3 см (рис. 5, *в*). Такие эффекты могли быть вызваны наложением косейсмических скачков

Рис. 5. Изменения уровня, температуры и электропроводности воды в скважине ЮЗ-5 с 1 января по 1 августа 2013 г., включающие ко- и постсейсмические вариации вследствие землетрясений 28 февраля и 24 мая 2013 г. (*а*, показаны стрелками). Детальные данные 5-минутных наблюдений во время вступления сейсмических волн от землетрясения 28.02.2013 г. (*б*) и Охотоморского землетрясения 24.05.2013 г. (*в*)

повышения уровня вследствие объемного сжатия водовмещающих пород при образовании разрывов в очагах землетрясений и кратковременных импульсов повышения порового давления в системе "скважина – водовмещающая порода" при прохождении сейсмических волн [Сильные..., 2014].

После землетрясения 28 февраля в изменениях среднечасовых значений уровня воды наблюдалось его интенсивное понижение (рис. 5, *a*), которое развивалось до середины апреля 2013 г. Амплитуда понижения уровня в течение 1.5 мес. составила 35 см. Следует отметить, что эффект постсейсмического понижения уровня воды наблюдался ранее в скв. ЮЗ-5 лишь однажды, после Кроноцкого землетрясения 5 декабря 1997 г., M_W =7.8. В случае Кроноцкого землетрясения понижение уровня с амплитудой около 1 м продолжалось три месяца [*Копылова*, 2006а].

После землетрясения 24 мая наблюдалось повышение уровня воды (рис. 5, *a*), которое развивалось до конца июня. Амплитуда повышения уровня составила 24 см.

В среднечасовых изменениях уровня воды, очищенных от влияния атмосферного давления, земных приливов и сезонных вариаций (рис. 5, *a*), не обнаружены аномалии в диапазоне периодов сутки–десятки суток перед обоими землетрясениями. Это указывает на отсутствие значимых проявлений процессов подготовки этих сейсмических событий в изменениях уровня воды в скв. ЮЗ-5 в течение суток–первых месяцев перед землетрясениями 28 февраля и 24 мая 2013 г.

На рис. 5, *а* также представлены изменения температуры и электропроводности воды в скв. ЮЗ-5. После землетрясения 28.02.2013 г. произошло заметное понижение температуры воды амплитудой 0.6 °С и повышение электропроводности на 4 мСм/м. Такие изменения физико-химических параметров подземных вод можно отнести к постсейсмическим вариациям в режиме этой скважины. Резкое повышение электропроводности воды амплитудой 6 мСм/м было зарегистрировано 7 января примерно за

8 недель до землетрясения (рис. 5, *a*). Возможное значение этого эффекта для прогноза землетрясений можно будет оценить по результатам дальнейших наблюдений.

В скв. Е-1 перед землетрясением 28.02.2013 г. проявлялся гидрогеодинамический предвестник в течение времени с 16 января по 27 февраля (рис. 6). Гидрогеодинамический предвестник в форме понижения уровня воды с повышенной скоростью в скв. Е-1 ранее был описан в [Копылова, 2001; Копылова, Болдина, 2012; и др.]. Особенностями этого вида предвестника являются: 1) его относительно регулярная повторяемость перед землетрясениями с $M \ge 5.0$ на расстояниях до 350 км (более 70 % случаев), что позволяет использовать его для прогнозирования сильных местных землетрясений; 2) увеличение связи предвестника и землетрясений с ростом их магнитуды [Копылова, 2001], указывающее на то, что перед более сильными сейсмическими событиями предвестник проявляется с большей регулярностью.

Рис. 6. Изменения уровня воды в скважине Е-1 с 01.10.2012 г. по 18.03.2013 г.: *1* и 2 – данные 5-минутной регистрации атмосферного давления и уровня воды, 3 – среднесуточные изменения уровня воды с компенсированными баровариациями, 4 – суточная скорость изменения уровня воды с учетом скорости нисходящего тренда. На графике 4 стрелками показаны: 1 – 16.01.2013 г., начало проявления гидрогеодинамического предвестника; 2 – 01.02.2013 г., дата подачи прогнозного заключения в КФ РЭС; 3 – 28.02.2013 г., дата землетрясения. Горизонтальная пунктирная линия – пороговое значение суточной скорости изменений уровня воды

С использованием этого вида предвестника по текущим данным уровнемерных наблюдений на скв. Е-1 с 2002 г. осуществляется оценка опасности возникновения сильных землетрясений в районе г. Петропавловска-Камчатского с предоставлением

прогнозных заключений в Камчатский филиал Российского экспертного совета по прогнозу землетрясений, оценке сейсмической опасности и риска (КФ РЭС). На основе этого предвестника 01.02.2013 г. Г.Н. Копыловой был подготовлен среднесрочный прогноз о повышенной вероятности возникновения сильного землетрясения на Камчатке, который был передан в КФ РЭС (рис. 6). В прогнозном заключении от 01.02.2013 г. указывалось, что "в течение времени 1-2 мес. повышена вероятность возникновения землетрясения с М≥5.0 на расстоянии до 350 км от скважины". В заключении также были приведены оценки надежности прогноза для землетрясений различных значений магнитуды, основывающиеся на результатах ретроспективного анализа проявлений гидрогеодинамического предвестника за период многолетних наблюдений [Копылова, Сизова, 2012]: "вероятность события с *М*≥5.0 *Р*=0.45, прогнозная эффективность предвестника *I*=1.4; вероятность события с *M*≥5.9 *P*=0.73, прогнозная эффективность предвестника I=2.2". В этом заключении под вероятностью события P понимается отношение числа землетрясений в указанном диапазоне магнитуд, произошедших на расстоянии до 350 км от скважины, которым предшествовало проявление предвестника, к общему числу таких событий. Величина прогнозной эффективности I оценивалась по [Гусев. 1974] и показывает во сколько раз использование данного предвестника улучшает прогноз по сравнению со случайным угадыванием.

Произошедшее 28 февраля землетрясение с M_W =6.8 на расстоянии 290 км от скважины соответствовало прогнозу от 1 февраля по магнитуде, времени и местоположению. Поэтому прогноз, поданный 01.02.2013 г. в КФ РЭС, является успешным как по авторским оценкам, так и по заключению КФ РЭС [Сильные..., 2014, с.152].

Поданный в КФ РЭС 01.02.2013 г. прогноз землетрясения по данным наблюдений за вариациями уровня воды в скв. Е-1 является также вероятностным, так как сопровождался оценками вероятности его реализации в отношении событий с различными величинами магнитуды. Это стало возможным благодаря выполненной систематизации данных о проявлении гидрогеодинамического предвестника в сопоставлении с произошедшими землетрясениями для периода многолетних (1987–2012 гг.) наблюдений на скв. Е-1. Тем самым было обеспечено его параметрическое описание [Копылова, 2001; Копылова, Сизова, 2012].

После землетрясения 28.02.2013 г. в скв. Е-1 в течение 1.5 мес. наблюдалось постсейсмическое повышение и последующее восстановление уровня воды. В течение двух суток после землетрясения в изменениях электропроводности фиксировалось слабое ее повышении с амплитудой 2 мСм/м. Ретроспективно было выявлено повышение электропроводности воды на 2 мСм/м 12.01.2013 г.

Изменения уровня воды в скв. Е-1 в период землетрясения 28 февраля: понижение с повышенной скоростью в течение 44 сут перед землетрясением и его повышение с амплитудой около 2 см после землетрясения (рис. 6) является типичным для периодов возникновения сильных ($M \ge 6.6$) местных землетрясений на расстояниях до первых сотен километров [Копылова, 2001; 2010]. В изменениях уровня воды в скв. Е-1 было зарегистрировано последовательное проявление гидрогеодинамического предвестника, который сменился после землетрясения постсейсмическим повышением, что согласуется с установленной ранее закономерностью изменения уровня воды в этой скважине при таких землетрясениях.

По данным регистрации физико-химических параметров подземных вод в скв. Е-1 с использованием глубинного зонда было обнаружено слабое повышение электропроводности воды амплитудой 1–2 мСм/м в течение двух суток после землетрясения (постсейсмический эффект). В изменениях температуры воды гидрогеосейсмические вариации не проявлялись.

Заключение

Созданная в КФ ФИЦ ЕГС РАН система наблюдений на скважинах с использованием аппаратурных комплексов Кедр-ДМ [Кедр-ДМ..., 2007] производства ООО "Полином", г. Хабаровск позволяет диагностировать гидрогеосейсмические вариации в изменениях уровня и физико-химических параметров подземных вод в режиме, близком к реальному времени. Наличие таких данных позволяет осуществлять углубленное изучение регистрируемых гидрогеосейсмических вариаций в изменениях физико-химических параметров подземных вод для оценки влияния сейсмичности на состояние подземных вод, включая процессы подготовки сильных землетрясений. При этом методология изучения гидрогеосейсмических вариаций параметров подземных вод должна включать их систематизацию и типизацию в сопоставлении с данными о вызвавших их землетрясениях с учетом локальных гидрогеологических условий.

Опыт наблюдения гидрогеосейсмических вариаций уровня, температуры и электропроводности воды с использованием аппаратурного комплекса Кедр-ДМ-У в двух пьезометрических скважинах в периоды сильных землетрясений 2013 г. показал надежность всех его элементов и высокую точность регистрации вариаций уровня воды с использованием ультразвукового скважинного уровнемера.

Вместе с тем, глубоководный зонд, входящий в состав оборудования (см. рис. 2, *в*), нуждается в доработке за счет обеспечения более высокой разрешающей способности датчика электропроводности воды. В настоящее время его разрешающая способность составляет 1 мСм/м, что является недостаточным для уверенного выделения гидрогеосейсмических вариаций в изменениях электропроводности подземной воды. При регистрации вариаций уровня воды также желательно осуществлять измерения с частотой не менее 1–10 Гц, особенно во время прохождения сейсмических волн, как это обеспечивается за рубежом (в Японии, США, в Китае, Израиле и других странах) при проведении аналогичных наблюдений [*Wang, Manga,* 2010].

В изменениях параметров подземных вод в скв. ЮЗ-5 (см. рис. 5) обнаружены гидрогеосейсмические вариации, вызванные воздействием сейсмических волн от землетрясения 28.02.2013 г., в том числе понижение уровня и температуры воды, увеличение электропроводности с максимальной амплитудой 4 мСм/м. Продолжительность развития постсейсмических эффектов составила 1–2 мес. За 8 недель до землетрясения было зафиксировано повышение электропроводности воды на 6 мСм/м.

По данным уровнемерных наблюдений в скв. Е-1 осуществлен успешный прогноз землетрясения 28.02.2013 г., M_W =6.8 с временем упреждения 4 нед. Прогноз сопровождался вероятностной оценкой его реализации, основанной на ретроспективном изучении (по данным многолетних наблюдений связи) гидрогеодинамического предвестника в изменениях уровня воды с произошедшими землетрясениями и его параметрическом описании.

Благодарности

Исследование выполнено в рамках плана научно-исследовательских работ ФИЦ ЕГС РАН по темам: "Проведение непрерывного сейсмологического, геофизического и геодинамического мониторинга на глобальном, федеральном и региональном уровнях, разработка и внедрение новых технологий обработки и системного анализа больших объемов сейсмологических и геофизических данных" (АААА-А16-116070550057-7), "Комплексное исследование предвестников сильных землетрясений и развитие методик прогнозирования сейсмической обстановки в сейсмоопасных регионах" (АААА-А16-116070550059-1). Авторы выражают благодарность сотрудникам ООО "Полином" (г. Хабаровск) кандидату технических наук Г.А. Калинову и Д.Г. Калинову за полезные консультации по техническим вопросам установки оборудования на скважинах и его эксплуатации.

Литература

- *Гусев А.А.* Прогноз землетрясений по статистике сейсмичности // Сейсмичность и сейсмический прогноз, свойства верхней мантии и их связь с вулканизмом на Камчатке. Новосибирск: Наука, 1974. С.109–119.
- *Калинов Г.А., Лысаков А.В., Римлянд В.И.* Способ ультразвукового измерения уровня жидкости: Патент 2156962 РФ. 2000 г.
- Калинов Г.А., Мигунов Д.С., Римлянд В.И. Оценка влияния шумов на фазовый способ определения момента прихода акустических импульсов // Вестник ТОГУ. 2009. № 1. Вып. 12. С.275–282.
- Калинов Г.А., Лысаков А.В., Римлянд В.И. и др. Автоматизированная система сбора гидрологической информации // Измерительная техника. 2012. № 2. Вып. 32. С.92–99.
- Кедр-ДМ. Комплекс для мониторинга ГГд поля с телеметрической передачей данных. Руководство по эксплуатации. ТДКП. 110879.004 РЭ. Хабаровск, 2007. 57 с.
- Копылова Г.Н. Изменения уровня воды в скважине Елизовская-1, Камчатка, вызванные сильными землетрясениями (по данным наблюдений в 1987–1998 гг.) // Вулканология и сейсмология. 2001. № 2. С.39–52.
- Копылова Г.Н. Изменения уровня воды в скважине ЮЗ-5, Камчатка, вызванные землетрясениями // Вулканология и сейсмология. 2006а. № 6. С.52–64.
- Копылова Г.Н. Сейсмичность как фактор формирования режима подземных вод // Вестник КРАУНЦ. Серия науки о Земле. 2006б. № 1. Вып. 7. С.50–66.
- Копылова (Гриц) Г.Н. Эффекты сейсмичности в режиме подземных вод (на примере Камчатского региона): Автореф. дис. ... докт. геол.-мин. наук. Петропавловск-Камчатский, 2010. 36 с.
- Копылова Г.Н., Болдина С.В. О связи изменений уровня воды в скважине Е-1, Восточная Камчатка, с активизацией вулкана Корякский в 2008–2009 гг. и сильными (*M*≥5) землетрясениями // Вулканология и сейсмология. 2012. № 5. С.41–54.
- Копылова Г.Н., Сизова Е.Г. О предвестнике землетрясений, проявляющемся в изменениях уровня воды в скважине Е-1, Камчатка // Вулканизм и связанные с ним процессы. Матер. конф., посвященной Дню вулканолога. Петропавловск-Камчатский: ИВиС ДВО РАН, 2012. С.116–125.
- Копылова Г.Н., Сугробов В.М., Хаткевич Ю.М. Особенности изменения режима источников и гидрогеологических скважин Петропавловского полигона (Камчатка) под влиянием землетрясений // Вулканология и сейсмология. 1994. № 2. С.53–70.
- Копылова Г.Н., Куликов Г.В., Тимофеев В.М. Оценка состояния и перспективы развития гидрогеодеформационного мониторинга сейсмоактивных регионов России // Разведка и охрана недр. 2007. № 11. С.75–83.
- *Лугуманов М.Г., Аметшин Р.М.* Высокочувствительный датчик электропроводности бурового раствора // Научно-технический вестник "Каротажник". 2003. С.111–112.
- Римлянд В.И., Калинов Г.А., Казарбин А.В. Автоматизированная система измерения уровня жидкости в резервуарах // Изв. вузов. Приборостроение. 2000. Т. 43, № 3. С.47–50.
- Сильные камчатские землетрясения 2013 года / Под ред. В.Н. Чеброва. Петропавловск-Камчатский: Холд. Комп. "Новая книга", 2014. 252 с.
- Wang C.-Y., Manga M. Earthquakes and Water. Heidelberg Dordrecht London New York: Springer, 2010. 225 p. DOI: 10.1007/978-3-642-00810-8.

Сведения об авторах

КОПЫЛОВА Галина Николаевна – доктор геолого-минералогических наук, доцент, заведующая лабораторией, Камчатский филиал Федерального исследовательского центра "Единая

СЕЙСМИЧЕСКИЕ ПРИБОРЫ. 2016. Том 52. № 4

геофизическая служба РАН". 683006, Петропавловск-Камчатский, бульвар Пийпа, д. 9. Тел.: 8(4152) 43-18-49. E-mail: gala@emsd.ru

БОЛДИНА Светлана Васильевна – кандидат геолого-минералогических наук, научный сотрудник, Камчатский филиал Федерального исследовательского центра "Единая геофизическая служба РАН". 683006, Петропавловск-Камчатский, бульвар Пийпа, д. 9. Тел.: 8(4152) 43-18-35. E-mail: boldina@emsd.ru

СМИРНОВ Анатолий Александрович – начальник сектора, Камчатский филиал Федерального исследовательского центра "Единая геофизическая служба РАН". 683006, Петропавловск-Камчатский, бульвар Пийпа, д. 9. Тел.: 8(4152) 43-18-18. E-mail: asmirnov@emsd.ru

ЧУБАРОВА Елена Геннадьевна – инженер-исследователь, Камчатский филиал Федерального исследовательского центра "Единая геофизическая служба РАН". 683006, Петропавловск-Камчатский, бульвар Пийпа, д. 9. Тел.: 8(4152) 43-18-54. E-mail: sizel@emsd.ru

An experience in registration of water level and physical and chemical parameters of ground waters in the wells due to strong earthquakes (on the example of Kamchatka)

G.N. Kopylova, S.V. Boldina, A.A. Smirnov, E.G. Chubarova

Kamchatka Branch, Geophysical Survey RAS, Petropavlovsk-Kamchatsky, Russia

Abstract. The paper describes the hardware complex for registration of water level, temperature, electrical conductivity of ground water and meteorological parameters (atmospheric pressure, air temperature) with frequency measurement from 5 minutes to one hour produced by a LLC "Polynom", Khabarovsk, installed in the wells in Kamchatka. With the use of this equipment, we registered different variations of measured parameters in groundwater in wells UZ-5 and E-1 due to strong earthquakes 2013, which occurred on February 28, M_W =6.8 and 24 May, of M_W =8.3. A description is given of the variations due to earthquakes and their systematization taking into account of the mechanisms of seismic impact on the state of the system "well – water-saturated rock".

Keywords: well, water level, electrical conductivity, hardware complex, earthquake, Kamchatka.