УДК 551.21+ 550.42

ВУЛКАНИЧЕСКИЙ МАССИВ ПЛОСКИХ СОПОК: ГЕОЛОГИЯ, ПЕТРОХИМИЯ, МИНЕРАЛОГИЯ И ПЕТРОГЕНЕЗИС ПОРОД (КЛЮЧЕВСКАЯ ГРУППА ВУЛКАНОВ, КАМЧАТКА)

© 2017 г. Г. Б. Флеров*, Т. Г. Чурикова, В. В. Ананьев

Институт вулканологии и сейсмологии ДВО РАН 683006 Петропавловск-Камчатский, бульвар Пийпа, 9 *e-mail: flerov@kscnet.ru

Поступила в редакцию 10.10. 2016 г.

Рассматриваются геологическая история и петрология крупного полигенного вулканического сооружения верхнеплейстоцен-голоценового времени. Этот долгоживущий вулканический центр знаменателен совместным проявлением магм базальтового и трахибазальтового составов, представленных базальт-андезитовой и трахибазальт-трахиандезитовой сериями. Делается вывод о генетической автономности сосуществующих родительских магм, генерированных в разных глубинных источниках области верхней мантии. Разнообразие составов вулканитов обязано многостадийной пространственно-временной кристаллизационной дифференциации магм и смешению последних в промежуточных очагах.

DOI: ...

ВВЕДЕНИЕ

С различной степенью полноты информация о массиве Плоских Сопок изложена в работах [Сирин, 1968; Пийп, 1956; Ермаков, 1977; Флеров, Овсянников, 1991; Чурикова, 1990; Чурикова, 1993; Чурикова, Соколов, 1993; Чурикова идр., 2012; Churikova et al., 2001, 2013]. Наши исследования внесли значительные коррективы в расшифровку вулканической истории формирования массива и петрогенезиса пород. Массив Плоских сопок (рис. 1) – самое крупное полигенное по морфологии и геологии вулканическое сооружение в Ключевской группе вулканов, образованное спаренными постройками позднеплейстоценовых стратовулканов Ушковского (3943 м) и Крестовского (4108 м). Вершинная часть вулкана Ушковского и часть вулкана Крестовского срезаны кальдерой обрушения размером 4.5 км × 5.5 км, которая включает два шлаковых конуса Херца и Горшкова и заполнена ледником. Вулкан Крестовский представляет собой сохранившийся после обрушения фрагмент вулканического конуса, который слагает С-СЗ-З обрывистый борт обвального цирка. Склоны массива изобилуют шлаковыми и шлако-лавовыми конусами побочных извержений, приуроченных к разным гипсометрическим уровням. Часть из них расположена по периферии вулкана Ушковского, а большая же часть конусов приурочена к узкой зоне с ЮЮЗ–ССВ–СВ простиранием, которая проходит через вершинную часть массива и его склоны и прослеживается на расстоянии 60 км при ширине от 6 до 8 км. Особенностью массива является присутствие в пределах одной постройки вулканитов нормальной и повышенной щелочности и пород различного структурного облика от афировых до мегаплагиофировых. Основой настоящего исследования послужили материалы, полученные для нескольких разрезов вулкана, выполнено 237 химических анализов пород и 1540 анализов составов породообразующих минералов.

МЕТОДЫ ИССЛЕДОВАНИЯ

Анализы петрохимического состава пород выполнены большей частью в Институте вулканологии и сейсмологии (ИВиС) ДВО РАН методом мокрой химии, частично в Институте геохимии (ИГ) им. А.В. Виноградова СО РАН методом XRF. Составы породообразующих минералов определялись на рентгеновском микроанализаторе "Camebax" (ИВиС ДВО РАН) с установленным энергодисперсионным спектрометром INCA с площадью кристалла 80 мм². Ток в режиме энергодисперсионного спектрометра на эталоне Ni – 20 на, ускоряющее напряжение 20 кв, экспозиция 15 сек на пике. В качестве эталонов использовались: голубой диопсид (Si, Mg, Ca), синтетический ильменит (Fe, Ti), синтетический фосфат алюминия (Al, P), альбит (Na), ортоклаз (K),

Рис. 1. Геологическая схема массива Плоских Сопок.

Вулканические образования: 1 – Толбачинской ареальной зоны Q₄; 2, 3 – верхнеплейстоцен-голоценовые $Q_3^{-3} - Q_4$ наложенной региональной зоны шлаковых конусов: шлаковые конусы и лавовые потоки андезибазальтового и андезитового состава нормальной и повышенной щелочности (2), агломератовые пирокластические отложения внутрикальдерных извержений, пирокластические потоки (3); 4-6 – верхнеплейстоценовые стратовулканов Q₃³: базальты влк. Крестовского (4), 5, 6 – лаво-пирокластические базальтового и андезибазальтового состава нормальной и повышенной щелочности влк. Ушковского: породы разных макроструктур (5), лавы мегаплагиофирового облика (6); 7 – верхнеплейстоценовые базальты щитового вулкана Q₃²; 8 – среднеплейстоценовые плато фундамента Q₂; 9 – фундамента стратовулканов Острого и Плоского Толбачиков; 10 – блок-останец Красный Утес, андезибазальты, андезиты стратовулкана Ушковского; 11 – шлаковые конусы в кальдере; 12 – другие шлаковые конусы; 13 – образования побочных извержений влк. Ушковского; 14 – разрушенные цепочки кратеров (a), разрушенные конусы (δ); 15 – эруптивные центры; 16 – стратовулканы Ушковский (a), Крестовский (δ); 17 – стратовулканы Ключевской, Камень, Средний; 18 – кальдерные уступы, выраженные в рельефе (а) и захороненные пирокластическими отложениями и ледником (б); 19 – тектонический уступ на реке Студеной; 20 – морены; 21 – ледники; 22 – предполагаемые разломы: магмоконтролирующие извержения региональной зоны шлаковых конусов (a); разлом, вызвавший сброс восточного сектора построек стратовулканов (δ). Геологическая схема массива составлена на основе схем из работ [Сирин, 1968; Флеров, Овсянников, 1991]. Врезка – место расположения массива.

синтетическая окись хрома (Сг), родонит (Мп). Исследования проводились в аншлифах пород и в мономинеральных фракциях размером более 0.25 мм, отобранных из протолочных проб весом до 300 грамм. Метод минеральных выборок привлекался в целях получения статистической информации о минералах вкрапленников, которые редко наблюдались в шлифах.

ГЕОЛОГИЧЕСКИЙ ОЧЕРК

Массив Плоских Сопок заложен на обширном пологом вулканическом плато с высотой поверхности ~ 1000 м, отложения которого мощностью порядка 200 м обнажаются в разрезе крутого обрыва правого борта каньона р. Студеной [Churikova et al., 2015а. рис. 3]. Породы плато представлены трахибазальтами и трахиандезибазальтами и отличаются разнообразием структур: от афировых до крупнопорфировых разновидностей. Среди последних присутствуют мегаплагиофировые лавы, выходы которых встречаются и на значительном удалении от центра вулкана, обнажаясь в фундаменте вулканов Зимины Сопки и Безымянный, а также в бортах р. Камчатки. По своему строению и составу толща представляет собой стратотип Хапиченского плато [Ермаков, 1977] и ее возраст по данным определения ⁴⁰Ar/³⁹Ar соответствует среднему плейстоцену: образец из Хапиченского плато 274 ± 8 тыс. лет, из разреза р. Студеной – 262 тыс. лет [Calkins, 2004].

Формирование единого массива Плоских Сопок как долгоживущего вулканического центра (см. рис. 1) определяется верхнеплейстоцен-раннеголоценовым временем $Q_3^2-Q_4^1$ [Брайцева и др., 1994; Ропотагеva et al., 2013; Базанова и др., 2016] и изначально связывается с деятельностью мощного щитового вулкана (Q_3^2) (в дальнейшем щитового). Щитовой вулкан заложен на породах плато и представлен преимущественно эффузивным характером извержений базальтовой магмы. Он являлся правулканом стратовулкана Ушковского, унаследовавшего его эруптивный центр. Диаметр щитового вулкана ~ 40–50 км, а наклон поверхности его лавовых потоков около 8–10°.

Вулкан Ушковский (Q_3^3) выделяется в рельефе крутыми склонами с углами наклона 35—40° и ступенчато-ярусным строением, отличается большой степенью эксплозивности и сложен чередованием лавовых потоков и пирокластических отложений. В его составе явно доминируют базальты, которые типичны для основания постройки, а вверх по разрезу сменяются чередованием пород базальт — андезибазальтовой и трахибазальт — трахиандезибазальтовой серий. Внутри разреза в виде непротяженных потоков и линз отмечаются и мегаплагиофировые лавы упомянутых выше составов, которые также венчают разрез в виде широкого плаща в вершинной части западного и восточного его секторов (см. рис. 1). Все упомянутые разновидности пород представлены также и в побочных прорывах.

Стратовулкан Крестовский отличается чисто базальтовым составом продуктов извержений. Он возник со смещением эруптивного центра к северу от вершины вулкана Ушковского и, по-видимому, после некоторого перерыва вулканической активности, сопоставимого с периодом ледниковой эрозии. Его образования в максимальном объеме сосредоточены лишь в северном секторе массива и выклиниваются в северо-западном, где базальтовые потоки налегают на верхнюю толщу мегаплагиофировых андезибазальтов вулкана Ушковского. В общей массе базальтов вулкана Крестовского разновидности с преобладанием плагиоклаза среди вкрапленников представлены менее, мегаплагиофировые лавы присутствуют только в его дайковом комплексе, и, вероятно, являются подводящими каналами посткальдерных извержений массива. В то же время встречаются базальты, обогащенные высокомагнезиальным оливином и хромпикотитом, базальты с высоким содержанием титаномагнетита (до 10%).

По результатам геолого-геоморфологических исследований щитовой вулкан и стратовулканы Ушковский и Крестовский, равно как и все стратовулканы Ключевской группы вулканов, возникли в интервале времени 40–60 тыс.л.н. [Мелекесцев и др., 1970; Брайцева и др., 1994; Базанова и др., 2016].

Период конца плейстоцена-начала голоцена знаменателен изменением геодинамической обстановки в регионе, выразившемся тектоно-магматической активизацией, возобновившейся после длительного периода относительного покоя. Вулканизм центрального типа, сформировавший стратовулканы, сменяется проявлением вулканизма трещинного типа. Главным структурным и магмоконтролируюшим элементом вулканических проявлений является дугообразный разлом субмеридиального – СВ простирания, рассекающий вулканический массив и проходящий через вершины обоих стратовулканов. В результате геотектонических процессов в пределах массива образуются две кальдеры обрушения, разрушившие вершинную часть Ушковского и часть Крестовского вулканов, на Ю-ЮЗ склоне вулкана Ушковского образуется грабен с сохранившимися останцами-блоками постройки. Происходит крупное обрушение восточного сектора массива, обнажившее разрез отложений стратовулкана, и другие побочные тектонические подвижки. Извержения происходили на протяжении всей разломной зоны: формируется вулканическая зона (региональная зона шлаковых конусов) с многочисленными шлаковыми и шлако-лавовыми конусами с площадными излияниями лав трахиандезибазальтового и трахиандезитового состава, заполнившими обе кальдеры и грабен. Такой характер вулканических проявлений подобен гавайским "рифтам" и особенно наглядно представлен в аналогичной голоценовой ареальной

зоне шлаковых конусов Толбачинского Дола, активной и в настоящее время [Брайцева и др., 1984; Флеров и др., 2015]. Позднее вулканическая деятельность сосредоточилась, главным образом, в кальдере и ЮЗ части трещинной зоны. Кальдера полностью заполнилась лавой, образовалась шитовая возвышенность со шлаковыми конусами Херца и Горшкова андезибазальтового состава, а ее потоки плащом перекрыли породы стратовулкана в его южном и восточном секторах. Кальдерные лавы в основном представлены породами с мегаплагиофировой и мезоплагиофировой структурами. Излияния мегаплагиофировых лав, по-видимому, синхронные по времени с кальдерными лавами, свойственны также эффузивному извержению группы конусов Лавовый Шиш, произошедшему в ~20 км к СВ от кромки кальдеры в трещинной зоне у С-СВ подножия Ключевского вулкана (см. рис. 1). Формирование зоны шлаковых конусов происходило в интервале поздний плейстоцен – ранний голоцен: возраст по ⁴⁰Ar/³⁹Ar образца лавы ранних извержений зоны датирован 25 тыс. лет, а по данным тефрогеохронологических исследований возраст последних извержений отвечает – 8600–1100¹⁴С лет BP [Calkins, 2004; Ponomareva et al., 2013; Базанова и др., 2016].

Вся постройка вулкана прорывается многочисленными дайками различного возраста, породы которых представлены теми же разновидностями, что и породы всего массива. С внутрикальдерными эксплозивными извержениями начальной стадии связаны отложения агломератовых пирокластических потоков с обломками пород (до 30% объема) из разреза вулкана, которые зафиксированы на внешних и внутренних склонах борта кальдеры и фрагментарно обнажаются под более молодыми лавовыми потоками у южного подножия массива, слагая толщу мощностью до 40 м. В этих отложениях, а также в мезоплагиофировом трахиандезите кальдерного лавового потока, были обнаружены ксенолиты вулканогенно-осадочных пород, амфиболитов, габброидов, катаклазированных оливинитов. Таким образом, геологическое строение и история формирования массива позволяют рассматривать все разнообразие вулканитов как единую совокупность, парагенетически связанную с многостадийной эволюцией магматической системы вулкана, развивающейся во времени и пространстве.

ПЕТРОХИМИЯ ПОРОД

Для построения петрохимических диаграмм использовались неопубликованные анализы авторов и из работ [Чурикова, Соколов, 1993; Чурикова, 1993; Иванов, 2008]. Представительные химические составы пород массива Плоских Сопок приведены в табл. 1. Как видно на диаграммах рис. 2, все вулканиты массива, в целом, располагаются в одном поле. Их составы образуют непрерывный ряд по кремнекислотности-щелочности в интервале SiO₂ – 49–60 масс.%

с тенленцией прогрессивного роста суммы шелочей (преимущественно К₂О). Однако, распределение фигуративных точек и их позиции на диаграммах для разновидностей пород разных геологических объектов, которые представляют разные этапы вулканизма геологической истории формирования массива, позволяют выделить две петрохимические серии пород. Все породы относятся к известково-шелочному типу. По общей щелочности они относятся к нормальнощелочным и умереннощелочным (в тексе статьи повышенной щелочности), а по содержанию К₂О – к умереннокалиевым и высококалиевым. Породы нормальной щелочности представлены базальтами, в меньшей степени – андезибазальтами и андезитами. Базальты являются самой распространенной породной группой массива, слагают вулканы щитовой и Крестовской и доминируют в вулкане Ушковском; андезиты отмечены только среди образований зоны шлаковых конусов. Породы повышенной щелочности представлены трахибазальтами, трахиандезибазальтами, трахиандезитами. Трахибазальты и трахиандезибазальты преобладают в плато-фундаменте и стратовулкане Ушковском, трахиандезиты в них представлены незначительно в то время, как в зоне шлаковых конусов доминирующую роль приобретают трахиандезиты (см. рис. 2).

Линии регрессии пород нормальной и повышенной щелочности субпараллельны. Эти совокупности обладают линейным распределением точек составов пород с положительной корреляцией между щелочами и SiO₂, а их позиции на диаграммах рис. 2 свидетельствуют об относительной дискретности пород нормальной и повышенной щелочности. Породы нормальной шелочности формируют тренд в интервале значений $SiO_2 - 49 - 55\%$, а породы повышенной щелочности стратовулкана Ушковского и зоны шлаковых конусов образуют единую совокупность с общим трендом в пределах SiO₂ 51-57% и 53-60%, соответственно. В породах Ушковского вулкана в интервале 51–54% SiO₂ через промежуточные разности наблюдается ступенчатое повышение щелочности от 4 масс.% до 5.6 мас.% $Na_2O + K_2O$, что позволяет выделить два ортогональных тренда: базальт – трахибазальт и андезибазальт – трахиандезибазальт (белые стрелки на рис. 2). Андезибазальты и андезиты слагают также отдельные кальдерные лавовые потоки и внутрикальдерные конусы кратеров Херца и Горшкова в зоне шлаковых конусов (см. рис. 2а, 2б, табл. 1, № 59 и 60). На диаграммах рис. 2 видно, что поле составов пород побочных извержений полностью перекрывает вулканиты стратовулкана Ушковского, а составы пород повышенной щелочности плато и массива Плоских Сопок располагаются в пределах поля таковых Хапиченского плато.

Учитывая идентичность составов пород, на корреляционной диаграмме зависимости оксидов от SiO2 (рис. 3) акцент делается на их сравнении

16	2038	Α	58.38	1.32	17.49	0.00	7.36*	0.13	2.69	6.48	3.52	2.25	0.65	100.27	аф	32	403/1	A	57.30	1.19	19.46	0.00	6.07^{*}	0.11	2.18	7.32	3.29	2.08	0.62	99.62	мзпа	за и др., суммар- і Шиш,
15	53	AБ	56.05	1.39	18.16	2.02	5.71	0.10	3.42	7.18	3.49	2.03	0.47	100.02	dоп	31	2328	TA	59.88	1.35	15.79	0.70	6.29	0.13	2.22	5.10	4.03	2.79	0.60	96.66	саф	- [Чурикоі імии. * – (- Лавовый
14	43	AB	54.42	1.19	16.51	0.00	8.26*	0.16	5.89	8.71	2.63	1.56	0.45	99.78	doп	30	2045	TA	58.50	1.18	16.90	0.00	7.49*	0.20	2.24	5.20	4.42	2.68	0.57	91.89	саф	лизы: 2 – 10крой хи 1я. № 29 –
13	2081	AБ	53.59	1.09	19.53	0.00	7.57	0.14	3.56	8.95	3.32	1.39	0.32	99.46	саф	29	III-25	TA	57.50	1.15	19.88	1.64	4.56	0.10	1.50	6.70	3.83	2.48	0.31	99.65	мгпа	усов. Ана аетодом м аофирова
12	2071	AB	52.71	0.95	16.52	0.00	8.56*	0.16	7.00	9.11	2.53	1.30	0.28	99.12	doп	28	AB86-9	TAB	55.68	1.12	20.05	1.22	5.14	0.07	1.98	6.72	4.05	2.68	0.42	99.13	мзпа	овых кон ВО РАН _М мезоплаги
11	2360	Р	51.67	1.20	18.80	3.26	5.86	0.14	4.22	9.04	2.88	1.56	0.37	90.00	doп	27	2373	TAB	54.08	1.66	17.85	2.58	6.91	0.14	3.60	6.24	3.94	2.19	0.55	99.74	doп	она шлако е в ИВ ДІ , мзпа – 1
10	111	Б	51.12	1.14	14.54	0.00	9.16*	0.17	9.99	10.18	2.70	1.28	0.39	100.67	doп	26	2364	Ð	51.76	1.29	17.03	2.83	7.73	0.17	6.08	8.54	2.93	1.29	0.30	99.95	цор	7—32—30 остальны офировая
6	2100/1	Б	50.98	1.055	17.69	4.31	5.21	0.16	5.64	10.08	3.07	1.15	0.26	100.10	doп	25	2091	р	51.47	1.13	16.80	0.00	8.99*	0.18	6.75	9.41	2.50	1.16	0.32	98.71	doп	ом ХКF; с ом ХКF; с стаплитис
8	2112	Р	50.93	1.05	16.74	2.48	6.64	0.16	6.56	10.16	2.96	1.18	0.26	99.74	мгпа	24	AB86-89	P	50.10	0.88	16.04	2.42	6.43	0.13	9.42	9.52	2.82	1.20	0.26	99.22	doп	ан Кресто АН методо мгла – ме
7	12	Р	50.78	0.98	16.13	3.62	6.57	0.16	7.98	9.32	2.61	1.20	0.33	99.68	doп	23	403/90	р	49.02	0.93	16.71	3.36	6.67	0.16	7.54	10.85	2.60	1.08	0.58	99.50	цор	ратовулк ИГ СО Р/ опровая,
6	2102	Р	50.41	0.75	17.29	3.28	6.60	0.17	66.9	10.23	2.52	1.06	0.28	99.58	саф	22	119	TAB	56.00	1.31	16.84	0.00	7.86^{*}	0.16	3.06	6.43	4.49	1.99	0.50	98.64	doп	3-26 - ст лнены в] ор – порф
5	301	Р	50.19	1.03	17.82	3.27	5.93	0.16	5.79	10.34	3.12	1.24	0.26	99.15	dоп	21	2304	TAB	55.86	1.484	17.75	1.31	6.11	0.12	2.65	7.53	3.68	2.16	0.60	100.07	мгпа	вский, 27 , 31 выпо. ровая, по
4	2077	Р	49.68	0.83	17.96	4.72	5.33	0.19	6.85	10.43	2.37	0.91	0.20	99.47	doп	20	39	TAB	54.63	1.27	19.64	0.00	6.88*	0.12	2.83	8.06	4.04	1.81	0.48	99.76	doп	сан Ушко 18, 19, 21, - субафи
3	2344	TA	56.34	1.64	16.96	2.81	6.32	0.15	3.04	5.62	4.05	2.52	0.58	100.03	аф	19	2348	TAB	54.37	1.501	16.44	2.56	6.47	0.16	4.09	7.55	3.78	1.91	0.48	100.04	саф	гратовулн]; 1, 8, 9, вая, саф
2	Plat 13-06	TAB	55.11	1.75	16.89	0.00	8.92*	0.15	3.46	7.21	3.63	2.22	0.65	99.99	dоп	18	2331	TB	51.85	1.43	16.94	3.60	6.47	0.17	4.55	8.66	3.46	1.76	0.438	100.23	мгпа	4—22 — сл нов, 2008 — афиро
1	2377	TB	51.18	1.76	16.22	1.48	9.16	0.18	5.34	8.41	3.47	1.79	0.51	99.49	аф	17	2374	TB	51.60	1.29	18.16	4.08	5.69	0.15	5.00	8.04	3.73	1.64	0.32	99.70	саф	– плато,)4 – [Иван стуры: аф
№ п/п	N⁰ oбp.	Порода	SiO ₂	TiO ₂	Al_2O_3	$\mathrm{Fe}_{2}\mathrm{O}_{3}$	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	Сумма	Структура	№ п/п	№ oбp.	Порода	SiO ₂	TiO ₂	Al_2O_3	$\mathrm{Fe}_{2}\mathrm{O}_{3}$	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	Сумма	Структура	Примечание. 1–3 2015а], 10, 13, 17, 2 ное железо. Струк

Таблица 1. Представительные химические составы пород (масс. %) массива Плоских Сопок

34

ФЛЕРОВ и др.

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ №4 2017

Рис. 2. Классификационные диаграммы SiO₂-Na₂O + K₂O (а) и SiO₂-K₂O (б) для пород массива Плоских Сопок. 1 – плато фундамента; 2–3 – стратовулканы Ушковский (2) и Крестовский (3); 4 – региональная зона шлаковых конусов; 5 – поле составов пород побочных извержений; 6, 7 – тренды эволюции пород нормальной (б) и умеренной (повышенной) щелочности (7); 8 – направление изменения щелочности; 9 – поле составов пород Хапиченского плато [Ермаков, 1977]. Дискриминационные диаграммы, по [Петрографический кодекс..., 2009; Рессегіllo, Taylor, 1976]. Римскими цифрами обозначены поля серий: низкокалиевой (I), умереннокалиевой известково-щелочной (II), высококалиевой известково-шелочной (III), субщелочной (IV).

согласно петрохимическим сериям нормальной и повышенной щелочности. По содержанию глинозема большинство пород вулкана относится к глиноземистым и высокоглиноземистым и характеризуется концентрациями этого элемента от 16% до 20%. Однако на вулканах Крестовском и Ушковском встречено несколько высокомагнезиальных

образцов базальтов, содержащих $Al_2O_3 - 14-15$ и MgO – 9–10 масс.%, соответственно (см. рис. 3в, 3г). В целом на диаграммах рис. 3 породы нормальной и повышенной щелочности формируют единое облако точек, обнаруживающее на большинстве диаграмм устойчивые корреляционные зависимости. Значительные вариации содержаний

Рис. 3. Диаграммы Харкера SiO₂ – оксиды для пород массива Плоских Сопок. 1 – породы нормальной щелочности; 2 – породы повышенной щелочности; 3, 4 – тренды эволюции пород нормальной (3) и умеренной (повышенной) щелочности (4); 5 – направление изменения щелочности.

макроэлементов, очевидно, связаны с тем, что породы массива представлены лавами необычно широкого диапазона структур [Кокс и др., 1982]. В то же время, при детальном рассмотрении на ряде диаграмм наблюдаются определенные различия в характере распределения фигуративных точек пород нормальной и повышенной щелочности, выраженные в относительном смещении их полей и разной ориентировке линий регрессии составов пород и трендов их эволюции. Отчетливые различия наблюдаются в содержании титана в породах нормальной и повышенной щелочности, что выражается трендами соответственно с прямой

и обратной корреляционной зависимостью изменения содержаний TiO_2 (см. рис. 3а). Линейный характер распределения фигуративных точек с более или менее надежной корреляцией относительно SiO_2 отмечаются по MgO, CaO и FeO*, при этом линии регрессии содержаний этих оксидов в породах серий соответственно нормальной и повышенной щелочности ориентированы субпараллельно (см. рис. 3в-е). Как и на рис. 2, в базальтоидах Ушковского вулкана проявляется два тренда изменения содержаний оксидов: в одном случае с вектором в направлении базальт. Отмеченные особенности эволюции состава пород различных структурно-возрастных комплексов массива Плоские Сопки могут рассматриваться как свидетельство их парагенетического единства.

ПЕТРОГРАФИЯ И МИНЕРАЛЬНЫЙ СОСТАВ ПОРОД

Петрографические разновидности вулканитов массива определяются вариациями количественно-минеральных соотношений и макроструктурами от афировых до мегаплагиофировых. Содержание вкрапленников и субфенокристаллов варьирует в пределах 5-50% объема породы с формированием порфировых и серийно-порфировых структур. В абсолютном большинстве всех типов пород как нормальной, так и повышенной щелочности наблюдается следующая минеральная ассоциация вкрапленников и субфенокристаллов: плагиоклаз + оливин + клинопироксен + титаномагнетит. В базальтах отмечаются как двупироксен-оливин-плагиоклазовые, так и плагиоклазовые разности пород с единичными вкрапленниками темноцветных минералов. Среди вкрапленников и субфенокристаллов темноцветных минералов обычно преобладает оливин. В двупироксеновых разновидностях базальтов содержание ортопироксена варьирует от единичных кристаллов до 2-3%. реже встречаются породы, в которых ортопироксен преобладает; в высокомагнезиальных базальтах вулкана Крестовского существенно преобладает оливин. В породах встречены полиминеральные $Ol + Cpx + Pl \pm Opx \pm TiMt \pm Ilm и мономинераль$ ные гломеропорфировые сростки. В трахибазальтах клинопироксен присутствует в существенно подчиненном количестве, отмечаются оливин-плагиоклазовые (безпироксеновые) разности. Рудный минерал, представленный группой шпинели, в обоих типах базальтов обнаружен во вкрапленниках, субфенокристаллах и как минерал-узник в фенокристаллах оливина, пироксенов и плагиоклаза; в базальтах нормальной щелочности он распространен в меньшей степени. Минеральная ассоциация микролитов соответствует таковой вкрапленников, но с преобладанием плагиоклаза, в базальтах среди микролитов встречается пижонит; рудный минерал обычно распылен в стекловатом базисе.

Минеральный состав андезибазальтов и трахиандезибазальтов аналогичный таковому описанным выше типам базальтов. С повышением кремнекислотности пород в них уменьшаются размеры и содержание темноцветных минералов до единичных зерен; существенно увеличивается количество плагиоклаза, а среди темноцветных минералов возрастает относительная доля клинопироксена. Вкрапленники и субфенокристаллы ортопироксена обычны для андезибазальтов и появляются в кислых разностях трахиандезибазальтов. В микролитовой ассоциации преобладает полевой шпат, среди темноцветных минералов всегда присутствует клинопироксен, а в андезибазальтах встречаются микролиты ортопироксена, оливина, нередко пижонита. Породы трахиандезитового состава представлены двупироксен-плагиоклазовыми и плагиоклазовыми разностями. Крайне редко встречается оливин в виде единичных мелких зерен в шлифах или в протолочных пробах и пижонит в основной массе. Из акцессорных минералов встречаются мелкие кристаллы апатита, крайне редко встречается амфибол в породах андезибазальтового и андезитового состава.

По структурному признаку породы вулкана Ушковского представлены порфировыми, субафировыми и мегаплагиофировыми разностями, в вулкане Крестовском обычно порфировые. Присутствие мегаплагиофировых лав несколько увеличивается от базальтов к породам андезибазальтового состава и резко сокращается к андезитовым.

Для пород зоны шлаковых конусов более типичны субафировые, афировые и мелкопорфировые макроструктуры с преобладанием плагиоклазовой фазы, резко порфировой основной массой и стекловатой матрицей, что свидетельствует об их быстрой кристаллизации. Кроме того, получили развитие густовкрапленные мезоплагиофировые лавы, характерные для кальдерных излияний.

Оливины. Представительные составы оливинов приведены в табл. 2. На диаграмме рис. 4 видно, что поля вкрапленников и субфенокристаллов оливинов из пород нормальной и повышенной щелочности в большей части перекрываются. Тем не менее, с учетом статистики определений просматриваются и различия в их составах. Оливины из базальтов и андезибазальтов по содержанию в них форстерита слагают относительно непрерывный ряд в интервале Fo (%) – 88–56 при массовой кристаллизации от Fo (%) – 83 (см. рис. 4a, 4б). Hauболее высокомагнезиальные оливины Fo₉₂₋₉₃, которые, по-видимому, являются первой ликвидусной фазой кристаллизации пород массива, были встречены только в базальте Крестовского вулкана и характеризуются пониженными значениями CaO = 0.12 - 0.13 macc.%.

Оливины из трахибазальтов и трахиандезибазальтов характеризуются более узким интервалом содержаний форстерита, а их массовая кристаллизация начинается с Fo₇₇. Вариации составов оливинов из трахиандезитов зоны шлаковых конусов полностью отвечают таковым трахиандезибазальтов. Оливины состава Fo (%) – 84–85 единично встречаются во всех типах пород повышенной щелочности (см. рис. 4а, 46). Положение на диаграмме фигуративных точек микролитов (см. рис. 46) позволяет рисовать два субпараллельных тренда эволюции составов оливинов: соответственно

№ п/п	1	2	3	4	5	6*	7	8	9	10	11	12	13	14
№ обр.		2377		23	44		21	02			2112	2081		
Порода	ТБ	ТБ	ТБ	TA	TA	Б	Б	Б	Б	Б	Б	Б	АБ	АБ
SiO ₂	38.35	38.11	36.75	37.87	37.60	39.37	39.01	37.75	37.43	38.69	38.99	38.33	37.91	37.35
FeO	21.24	24.28	28.25	25.29	27.10	15.82	18.29	24.22	27.28	20.04	21.21	25.05	18.92	23.67
MgO	39.23	36.49	33.28	36.16	34.78	43.66	41.62	36.84	34.23	40.29	38.38	34.92	41.64	37.11
CaO	0.20	0.24	0.24	0.17	0.19	0.18	0.19	0.26	0.23	0.22	0.26	0.25	0.22	0.21
MnO	0.39	0.41	0.59	0.43	0.42	0.26	0.29	0.41	0.56	0.40	0.38	0.44	0.35	0.50
Сумма	99.41	99.53	99.11	99.92	100.09	99.29	99.40	99.48	99.73	99.64	99.33	99.12	99.24	98.97
Fo, %	76.70	72.82	67.74	71.82	69.58	83.11	80.22	73.06	69.10	78.18	76.33	71.31	79.69	73.65
№ п/п	15	16	17	18	19	20	21	22	23	24	25	26	27	28
№ обр.		23	74		2331		39			2328				
Порода	ТБ	ТБ	ТБ	ТБ	ТБ	ТАБ	ТАБ	ТАБ	Б	Б	Б	Б	Б	TA
SiO ₂	38.86	38.79	38.39	38.79	38.03	37.88	36.17	37.48	41.22	40.71	39.87	39.69	40.40	37.57
FeO	20.49	21.23	22.86	22.23	24.88	25.09	29.46	28.34	6.48	7.65	10.25	14.65	15.77	28.14
MgO	39.92	40.05	38.72	38.97	35.71	36.30	31.72	33.78	50.82	51.03	49.26	45.42	42.71	33.95
CaO	0.14	0.16	0.23	0.19	0.24	0.19	0.23	0.26	0.06	0.10	0.16	0.15	0.22	0.17
MnO	0.33	0.39	0.45	0.35	0.50	0.38	0.52	0.50	0.12	0.12	0.13	0.17	0.41	0.60
Сумма	99.74	100.62	100.65	100.5	99.39	99.84	98.10	100.36	98.74	99.69	99.70	100.1	99.56	100.43
Fo, %	77.60	77.08	75.12	75.76	71.46	72.06	65.75	68.00	93.20	92.13	89.42	84.53	82.46	68.26

Таблица 2. Представительные составы вкрапленников и субфенокристаллов оливинов (масс. %) из пород массива Плоских Сопок

Примечание. 1–5 – плато, 6–22 – вулкан Ушковский, 23–27 – вулкан Крестовский, 28 – зона шлаковых конусов. Б – базальт, ТБ – трахибазальт, ТАБ – трахиандезибазальт, ТА – трахиандезит. * – зерно с включением граната.

нормальной (с повышенным CaO) и повышенной (с пониженным CaO) щелочности. Отметим, что в фенокристаллах оливина Fo_{83} из базальта были встречены микровключения граната (андрадита) и расплавные включения: стекло состава трахита (SiO₂-62 масс.% и Na₂O+K₂O - 11.7 масс.%) + кристаллы клинопироксена с высокими содержаниями TiO₂ и Al₂O₃.

Шпинелиды. По химическому составу выделяется два типа шпинелидов: хромпикотиты и титаномагнетиты с флуктуациями концентраций титана, алюминия и хрома (табл. 3, рис. 5). Хромпикотиты, как типоморфный минерал, с высоким содержанием Cr₂O₃-27-29 масс.% и Al₂O₃-17 масс.% встречены в качестве минералов-узников во вкрапленниках оливина и самостоятельной фазы в базальтах Ушковского и Крестовского вулканов. На диаграмме они занимают явно дискретную позицию, что свидетельствует о прерывисто-стадийной кристаллизации. Титаномагнетиты свойственны всем типам пород массива, при этом минералы из базальтов в сравнении с таковыми из трахибазальтов систематически обогащены по хрому и алюминию. В мономинеральной фракции трахиандезитов зоны шлаковых конусов и в трахиандезибазальте вулкана Ушковского, соответственно, обнаружены кристалл хромпикотита и его включение в оливин Fo₈₅ (см. рис. 5).

Клинопироксены. Клинопироксены вкрапленников и субфенокристаллов из базальтов и андезибазальтов представлены рядом салит — авгит, а их микролиты авгитом и пижонитом (рис. 6а, 6г, табл. 4). Минералы из пород повышенной щелочности в основном соответствуют авгитам, при этом таковые из трахиандезибазальтов и трахиандезитов отличаются более высоким содержанием фаялитового минала (см. рис. 6б, 6в, табл. 4). Единичные зерна салита были обнаружены только в мономинеральных фракциях протолочных проб пород повышенной щелочности. Микролиты слагают ряд авгит — субкальциевый авгит — пижонит (см. рис. 6г).

По соотношению Mg[#] Cpx — Ті клинопироксены вкрапленников из пород нормальной и повышенной щелочности располагаются в пределах одного поля с типичной для них обратной корреляционной зависимостью (рис. 7). Однако клинопироксены из базальтов нормальной щелочности в целом значимо отличаются от клинопироксенов из базальтов повышенной щелочности изначально более протяженной линией регрессии, которая охватывает область высокомагнезиальных составов

Рис. 4. Вариационная диаграмма Fo–CaO (масс.%) для оливинов из базальтов (а) и андезибазальтов и андезитов (б) массива Плоских Сопок.

 1 – базальты, 2 – трахибазальты, 3 – андезибазальты,
4 – трахиандезибазальты, 5 – трахиандезиты, 6 – микролиты из пород нормальной щелочности, 7 – микролиты из пород повышенной щелочности. Тренды эволюции состава минералов из пород нормальной (8) и повышенной (9) щелочности.

ранних стадий кристаллизации: интервалы магнезиальности Срх, соответственно: 84–67 для базальтов нормальной щелочности и 77–69 для базальтов повышенной щелочности. Тем не менее, единичное зерно высокомагнезиального клинопироксена с Mg[#] = 84 также было встречено в одном из изученных трахибазальтов. В сравнении с клинопироксенами базальтов, часть Срх из трахибазальтов обогащена Ti, а другая попадает в поле составов с пониженным содержанием этого элемента.

Клинопироксены из базальтов и андезибазальтов формируют устойчивый тренд 1, продолжающийся в область фигуративных точек микролитов (см. рис 7а, 7б). Среди клинопироксенов из трахиандезибазальтов и трахиандезитов на фоне широкой вариабельности содержания Ті просматривается две совокупности (см. рис. 7б). Одна группа точек клинопироксенов трахиандезибазальтов образует тренд 2, изначально совпадающий, или

Рис. 5. Композиционная диаграмма Cr–Al–Fe³–Ti (рассчитанные на катионы) для шпинелидов из пород массива Плоских Сопок.

1 – базальты, 2 – трахибазальты, 3 – андезибазальты,
4 – трахиандезибазальты, 5 – хромпикотит из минеральной фракции трахиандезита зоны шлаковых конусов. Содержание катионов в кристаллохимической формуле минерала рассчитано на 32 атома кислорода.

субпараллельный с таковым андезибазальтов, но с тенденцией крутого повышения содержания Ті, другая (трахиандезибазальты и трахиандезиты) – образует от Mg[#]Cpx = 74 субгоризонтальный тренд 3. Примечательно, что пижониты в породах нормальной и повышенной щелочности так же отличаются по магнезиальности: Mg[#] Pig – 63–67 и 56–61, соответственно. Кроме того, в трахиандезибазальтах и трахибазальте встречены единичные зерна высокомагнезиальных клинопироксенов с Mg[#] = 80–85 (см. рис. 7). Клинопирксены состава фассаита с аномально высоким содержанием титана (TiO₂ = 1.6–2.2 масс.%) и глинозема (Al₂O₃ = 9.8–14.9 масс.%), были встречены в расплавном включении в оливине (см. табл. 2, рис. 7а).

Ортопироксены представлены непрерывной серией бронзит — гиперстен с интервалами Mg[#] Орх 78-68 и 75-62 в породах рядов

№ п/п	1	2	3	4	5	6	7	8	9	10	11	12	13	14
№ обр.	2377		2102			3081		23	74	3	9	AB86-89		9
Порода	ТБ	ТБ	Б	Б	АБ	АБ	АБ	ТБ	ТБ	ТАБ	ТАБ	Б	Б	Б
SiO ₂	3.09	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.23	0.27	0.00	0.20
TiO ₂	5.48	7.18	1.21	6.20	0.61	0.89	3.87	6.25	8.87	15.91	10.62	0.31	0.09	0.42
Al_2O_3	5.76	5.04	17.24	7.79	11.71	11.97	10.32	6.23	4.92	3.86	5.36	9.55	19.18	10.85
Cr_2O_4	6.06	4.71	28.25	1.45	25.35	14.94	16.55	1.93	3.52	2.81	3.32	54.75	16.67	45.24
Fe_2O_3	36.78	44.16	21.25	46.44	31.40	39.87	36.83	49.68	44.70	31.30	39.84	6.90	36.83	15.16
FeO	35.92	34.92	23.21	32.17	23.43	23.85	25.85	32.05	35.54	41.30	38.02	15.67	13.32	18.83
MnO	0.40	0.48	0.39	0.29	0.47	0.38	0.43	0.00	0.43	0.51	0.48	0.25	0.16	0.41
MgO	2.43	1.77	7.86	3.23	6.48	6.06	6.92	3.84	2.93	3.05	2.48	11.41	13.82	9.74
Сумма	95.92	98.26	99.57	97.57	99.45	97.96	100.77	99.98	100.91	98.96	100.35	99.14	100.07	100.85
F/FM	89.24	91.71	62.36	84.82	66.98	68.83	67.70	82.40	87.19	88.37	89.58	44.19	35.11	52.45
Fo, %	76.70	72.82	80.22	73.06	79.69	79.69	79.69	77.08	77.60	72.06	68.00	92.13	84.53	89.42

Таблица 3. Представительные составы шпинелидов, включенных в оливины (масс.%) из пород массива Плоских Сопок

Примечание. 1–2 – плато, 3–11 – вулкан Ушковский, 12–14 – вулкан Крестовский. Б – базальт, АБ – андезибазальт, ТБ – трахибазальт, ТАБ – трахиандезибазальт. Fo,% – содержание форстеритового миналав минерале-хозяине.

базальт — андезибазальт и трахиандезибазальт — трахиандезит соответственно (см. рис. 6).

Полевые шпаты. Вкрапленники и субфенокристаллы всех пород представлены Са-Na плагиоклазом (табл. 5). На рис. 8а и 8б выделяется явно доминирующая совокупность массы точек плагиоклазов нормальной и повышенной щелочности с хорошей корреляционной зависимостью. Внутри этого поля отмечается дискретность с промежутком в области An₇₂₋₇₃ в минералах из базальтов и An₆₄₋₇₃ в трахибазальтах (см. рис. 8а), что свидетельствует

о прерывисто-стадийной кристаллизации пород. Плагиоклазам начальных стадий кристаллизации базальтов свойственны более основные составы с максимальным содержанием анортитового минала от 88%, которые наследуются в андезибазальтах, а в плагиоклазах из трахибазальтов в интервале An - 60-65% наблюдается повышенное содержание ортоклазовой составляющей (см. табл. 5, рис. 8а, 8б). Плагиоклазы из базальтов и андезибазальтов разной щелочности следуют как единый тренд, так и формируют (равно как на рис. 7) веерообразную

Рис. 6. Классификационная диаграмма En–Wo–Fs для пироксенов из пород массива Плоских Сопок. а–в – для вкрапленников и субфенокристаллов, г – для микролитов.

1, 2 – базальты и андезибазальты: из пород (1), из расплавного включения (2); 3 – трахибазальты; 4 – трахиандезибазальты и трахиандезиты; 5 – микролиты в породах, нормальной щелочности; 6 – микролиты в породах повышенной щелочности; 7 – поле вкрапленников базальтов; 8 – поле вкрапленников трахибазальтов. Дискриминационные диаграммы, по [Poldervaart, Hess, 1951].

№ п/п	1	2	3	4	5	6	7	8	9	10	11	12	13	
№ обр.		2377		Plate	013-6		21	02			2112		2081	
порода	ТБ	ТБ	ТБ	ТАБ	ТАБ ТАБ		Б	Б	Б	Б	Б	Б	АБ	
SiO ₂	50.84	50.58	51.66	49.12	51.72	51.34	50.19	49.72	50.91	44.34	50.46	50.35	51.60	
TiO ₂	0.77	0.79	0.67	1.43	0.90	0.30	0.53	0.63	0.62	1.60	0.73	0.73	0.46	
Al_2O_3	2.80	2.37	2.17	3.70	1.72	3.00	3.96	4.03	2.68	11.46	3.69	4.16	3.01	
Cr_2O_3	0.01	0.00	0.00	0.00	0.00	0.47	0.24	0.18	0.00	0.00	0.00	0.11	0.36	
FeO*	9.06	10.69	8.45	11.06	10.95	5.51	6.95	8.84	10.69	7.53	8.91	9.07	6.52	
MnO	0.28	0.36	0.39	0.30	0.34	0.18	0.17	0.21	0.38	0.00	0.22	0.25	0.17	
MgO	14.96	14.84	15.69	13.77	15.87	16.12	14.50	14.53	14.68	11.89	15.85	14.59	16.21	
CaO	19.79	17.98	20.32	19.94	17.97	21.50	21.94	20.50	18.43	21.48	19.64	19.25	21.73	
Na2O	0.28	0.22	0.33	0.37	0.28	0.30	0.23	0.37	0.25	0.45	0.41	0.32	0.32	
Сумма	98.86	97.92	99.68	99.69	99.75	98.72	98.71	99.01	98.64	98.75	99.91	98.84	100.38	
Woll	41.50	38.28	41.69	41.78	36.98	44.58	46.15	43.05	39.05	48.93	40.37	41.29	44.01	
En	43.66	43.96	44.78	40.14	45.44	46.50	42.43	42.46	43.27	37.68	45.33	43.53	45.68	
Fs	14.84	17.77	13.53	18.09	17.59	8.92	11.41	14.49	17.68	13.39	14.30	15.18	10.31	
Mg #	74.64	71.22	76.80	68.94	72.09	83.91	78.81	74.55	70.99	73.79	76.02	74.14	81.59	
№ п/п	14	15	16	17	18	19	20	21	22	23	24	25	26	
№ обр.		2081		23	74	2331 39			A86-89					
порода	АБ	АБ	АБ	ТБ	ТБ	ТБ	ТАБ	ТАБ	Б	Б	Б	Б	TA	
SiO ₂	50.24	51.01	49.93	48.71	49.52	51.28	50.59	50.72	52.46	51.69	52.81	52.52	52.8	
TiO ₂	0.72	0.79	1.02	1.30	1.02	0.45	1.24	1.15	0.40	0.65	0.28	0.19	0.65	
Al_2O_3	3.81	2.48	3.64	4.62	3.56	2.83	2.31	2.40	2.54	3.52	2.77	2.62	2.08	
Cr_2O_3	0.37	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.24	0.36	0.54	0.41	0.02	
FeO*	7.24	9.73	11.20	10.60	9.87	9.64	12.98	12.28	7.26	7.99	6.30	4.86	9.22	
MnO	0.22	0.26	0.30	0.30	0.28	0.35	0.33	0.34	0.14	0.15	0.15	0.10	0.31	
MgO	15.46	16.23	15.92	14.18	14.41	15.86	14.06	15.56	16.21	15.33	16.72	16.27	14.32	
CaO	21.37	18.41	17.22	19.28	19.70	17.81	18.36	16.90	20.03	20.13	20.08	21.55	20.04	
Na ₂ O	0.40	0.38	0.46	0.53	0.42	0.32	0.43	0.32	0.06	0.30	0.35	0.24	0.16	
Сумма	99.83	99.29	99.69	99.52	98.78	98.61	100.30	99.67	99.38	100.1	100.00	98.76	99.60	
Woll	44.03	37.89	35.79	40.78	41.51	37.58	38.21	35.11	41.52	42.21	10.19	7.91	42.50	
En	44.32	46.48	46.04	41.73	42.25	46.55	40.71	44.98	46.74	44.72	48.20	47.18	42.24	
Fs	11.64	15.63	18.17	17.50	16.23	15.88	21.08	19.91	11.75	13.08	10.19	7.91	15.26	
Mo #	79.19	74.83	71.70	70.45	72.24	74.57	65.88	69.31	79.92	77.37	82.55	85.65	73.46	

Таблица 4. Представительные составы вкрапленников и субфенокристаллов клинопироксенов (масс.%) из пород массива Плоских Сопок

Примечание. 1–5 – плато, 6–21 – вулкан Ушковский, 22–25 – вулкан Крестовский, 26 – зона шлаковых конусов. Б – базальт, АБ – андезибазальт, ТБ – трахибазальт, ТАБ – трахиандезибазальт, ТА – трахиандезит.

серию разнопологих трендов, исходящих от состава An_{60-65} (см. рис. 8а, 8б). Кроме того, в базальтах и андезибазальтах нормальной щелочности присутствует генерация вкрапленников плагиоклаза с содержанием ортоклазового минала в интервале 0-0.1%, которая никогда не наблюдалась в породах повышенной щелочности (см. рис. 8а, 8б). Микролиты из всех пород закономерно дополняют и продлевают тренд эволюции составов вкрапленников, характеризуясь при этом выраженной

тенденцией повышения в плагиоклазах ортоклазовой составляющей до Ort 10–13% в олигоклазах (см. рис. 8в). В основной массе пород присутствует и калиевый полевой шпат (анортоклаз), который в породах ряда трахибазальт – трахиандезит значимо представлен микролитами (его единичные зерна также встречены в базальтах), а в базальтах – андезибазальтах нормальной щелочности его микровыделения определены в базисе основной массы. Среди микролитов трахибазальта и в матрице

1–7, 11, 12 – условные обозначения см. рис. 5; 8 – микролиты пижонита из пород нормальной щелочности; 9 – микролиты пижонита из пород повышенной щелочности; 10 – пироксен из расплавного включения. Ф.е. – формульные единицы.

базальта и трахиандезибазальта обнаружен также K—Na полевой шпат с содержанием Ort до 63% (см. рис. 8в, врезка).

В целом, эволюция составов минералов из пород массива Плоских сопок выражена типичной тенденцией последовательного изменения согласно с возрастанием кремнекислотности пород (см. рис. 5-8). Составы минералов из всех разностей пород обладают широкой вариабельностью, большей частью сходны и располагаются в одних полях, что создает некоторую хаотичность в их распределении на диаграммах, особенно из пород средней кремнекислотности. Тем не менее, отмечаются определенные различия в их составах, выраженные заметным смещением полей фигуративных точек, и в трендах их эволюции для пород серий нормальной и повышенной щелочности соответственно (см. рис. 5–8). Минералы ранних фаз кристаллизации базальтов от трахибазальтов обладают значимо более высокими значениями Fo в оливинах, An в плагиоклазах, Mg[#] Cpx и пониженными

Рис. 8. Вариационная диаграмма An–Ort для полевых шпатов из пород массива Плоских Сопок.

а, б — вкрапленники и субфенокристаллы, в-составы полевые шпаты из основной массы. 1–7, 10, 11 условные обозначения см. рис. 5; 8, 9 — составы полевых шпатов матрицы в основной массе базальтоидов нормальной (8) и повышенной (9) щелочности. Контур сплошной линии — поле составов вкрапленников и субфенокристаллов. На врезке показано продолжение An-Ort тренда в более калиевую область.

содержаниями TiO₂ по сравнению с минералами из трахибазальтов. Также базальты характеризуются наличием ортопироксена и хромпикотитов против титаномагнетитов в трахибазальтах. Типоморфные минеральные парагенезисы основных пород массива Плоских Сопок с учетом статистики массовых определений вкрапленников следующие:

ВУЛКАНИЧЕСКИЙ МАССИВ ПЛОСКИ СОПОК

№ п/п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
№ обр.		2377		Plato	013-6	2344		21	02			2081			
порода	ТБ	ТБ	ТБ	ТАБ	ТАБ	TA	Б	Б	Б	Б	Б	Б	Б	Б	АБ
SiO ₂	46.65	48.87	51.99	49.44	52.29	53.50	45.33	52.62	46.71	52.09	52.13	50.57	48.2	46.69	46.31
Al_2O_3	32.78	31.72	29.30	31.41	29.40	27.45	33.68	28.59	32.83	29.81	29.30	30.49	32.2	33.85	33.45
FeO	0.72	0.80	0.64	0.73	0.79	1.20	0.81	0.67	0.87	1.09	1.15	1.06	1.08	0.88	0.87
CaO	16.81	15.21	12.35	15.27	12.87	11.18	17.81	12.11	16.86	13.44	12.87	14.33	15.5	17.24	17.53
Na ₂ O	1.88	2.65	4.13	2.98	4.11	4.74	1.40	4.41	2.00	3.83	3.94	3.26	2.39	1.37	1.62
K ₂ O	0.13	0.17	0.39	0.28	0.35	0.70	< 0.01	0.47	0.12	0.32	0.37	0.28	0.18	0.07	< 0.01
Сумма	98.97	99.42	98.80	100.19	99.90	98.90	99.03	98.87	99.39	100.79	99.96	100.18	99.6	100.2	99.88
ORT	0.76	1.00	2.29	1.59	2.01	4.05	0.00	2.71	0.69	1.84	2.16	1.62	1.07	0.42	0.00
AB	16.70	23.73	36.84	25.68	35.89	41.66	12.45	38.65	17.55	33.40	34.88	28.69	21.58	12.52	14.33
AN	82.54	75.27	60.87	72.73	62.10	54.30	87.55	58.64	81.76	64.77	62.96	69.69	77.35	87.06	85.67
№ п/п	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
№ обр.	2081	23	31			2374			3	9	Ч3-90		A86-89		2328
порода	АБ	ТБ	ТБ	ТБ	ТБ	ТБ	ТБ	ТБ	ТАБ	ТАБ	Б	Б	Б	Б	TA
SiO ₂	52.75	52.6	52.8	47.15	48.44	49.22	49.64	50.65	48.09	53.72	46.47	49.44	51	54.49	54.2
Al_2O_3	28.11	28.9	28.7	33.31	32.61	30.91	32.07	30.40	32.00	28.64	32.28	32.15	30.7	28.01	28.00
FeO	1.78	1.02	0.91	0.73	1.07	0.89	0.67	0.96	0.70	0.68	0.89	1.03	0.95	1.63	0.72
CaO	11.70	12.5	12.1	16.15	15.67	14.51	14.8	13.96	15.49	11.71	17.02	15.4	14.1	12.06	11.1
Na ₂ O	4.63	3.71	3.99	2.00	2.20	3.22	2.74	3.63	2.61	4.72	1.73	2.43	3.02	4.10	4.24
K ₂ O	0.40	0.39	0.48	0.12	0.13	0.23	0.18	0.27	0.21	0.47	0.09	0.13	0.19	0.28	0.58
Сумма	99.57	99.3	99.2	99.46	100.12	99.08	100.10	99.98	99.18	100.02	98.65	100.8	100	101.03	98.9
ORT	2.32	2.37	2.87	0.72	0.78	1.33	1.07	1.54	1.22	2.69	0.52	0.78	1.14	1.68	3.55
AB	40.76	34.20	36.30	18.18	20.10	28.27	24.82	31.50	23.08	41.04	15.45	22.04	27.58	37.45	39.48
AN	56.92	63.43	60.83	81.11	79.12	70.40	74.10	66.95	75.70	56.27	84.02	77.19	71.27	60.87	56.96

Таблица 5. Представительные составы плагиоклазов (масс. %) из пород массива Плоских Сопок

Примечание. 1–6 – плато, 7–25 – вулкан Ушковский, 26–29 – вулкан Крестовский, 30 – зона шлаковых конусов. Б – балальт, АБ – андезибазальт, ТБ – трахибазальт, ТАБ – трахиандезибазальт, ТА – трахиандезит.

для базальтов – Fo₈₈ + CrSp + Mg[#] Cpx $_{84}$ + An $_{88}$ + Mg[#] Opx $_{78}$; для трахибазальтов – Fo₇₇ + An $_{83} \pm$ Mg[#] Cpx $_{77}$ + TiMt. Различие составов-парагенезисов находит свое объяснения с позиции концепции Д.С. Коржинского, основанной на дифференциальной подвижности компонентов и их активности. Согласно ей, при той же температуре из щелочной магмы начнут выделяться минералы, обедненные сильными основаниями и обогащаться более слабыми, что приводит к кристаллизации оливинов, пироксенов, обогащенных железом и обедненные магнием и плагиоклазов обедненных кальцием по сравнению с породами нормального ряда [Коржинский, 1960].

Присутствие в андезибазальтах, трахиандезибазальтах и трахиандезитах неравновесных вкрапленников, которые по степени обогащения рядом элементов сопоставимы с парагенезисами минералов пород большей основности, свидетельствует как об их неполном фракционировании в ходе кристаллизации магмы, так и о смешении дифференциатов. Кроме того, во всех породах повышенной щелочности обнаружены минералы парагенезиса ранних фаз кристаллизации базальтов, явно неравновесные с породой соответствующей кремнекислотности, что является признаком смешения магм разной щелочности.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Петрохимические данные показывают, что среди вулканитов получили развитие вулканические ассоциации, которые включают породы разной щелочности и обладают разными тенденциями эволюции (см. рис. 2, рис. 3). В одном случае это ряд пород нормальной щелочности: базальт — андезибазальт — андезит, в другом — повышенной щелочности: трахибазальт — трахиандезибазальт — трхиандезит. При этом все петрохимические типы упомянутых рядов связаны промежуточными составами, что может являться признаком многостадийного смешения магм.

Существование двух рядов эволюции вулканитов выражено трендами эволюции составов пород относительно кремнекислотности: субпараллельными по щелочности, содержанию FeO*, CaO, MgO и разно ориентированными трендами по TiO_2 , Al_2O_3 (см. рис. 2, рис. 3), а также смещением полей составов минералов, субпараллельностью трендов вкрапленники – микролиты и различием минеральных парагенезисов ранних фаз их кристаллизации (см. рис. 5–8). Все это предполагает относительную автономность двух сосуществующих родительских магм, генерированных в разных магматических источниках области верхней мантии. В пользу существования глубинного источника трахибазальтовой магмы свидетельствует щелочно-базальтовый состав пород плато [Churikova et al., 2013, 2015а], отражающего этап вулканизма, предшествующий формированию массива Плоских Сопок, и принципиальное сходство со сценарием вулканизма Толбачинского Дола [Брайцева и др. 1984; Флеров и др., 2015; Колосков и др., 2015; Churikova, 2015а, б]. В свою очередь, это свидетельствует о включении щелочной магмы в общий процесс вулканической деятельности стратовулкана Ушковского с последующим синхронным функционированием базальтового и трахибазальтового магматических источников.

Линейный характер изменения составов пород разной щелочности с типичной тенденцией корреляционной зависимости щелочи — кремнекислотность свидетельствует об образовании их эволюционных рядов в результате процессов кристаллизационной дифференциации базальтовой и трахибазальтовой магм, соответственно. Учитывая редкое присутствие высоко-Mg базальтов в общем объеме пород массива (см. рис. 3г), состав первичной (?) базальтовой магмы, по-видимому, отвечает глиноземистому базальту, характерному для ранних этапов формирования массива, а высокомагнезиальные базальты представляют собой продукт кристалло-гравитационной дифференциации магмы с отсадкой субликвидусных оливинов и пироксенов в нижних частях магматического очага.

Вероятно, все разнообразие вулканитов и исходные магмы вулканических ассоциаций пород являются производными продуктами эволюции родительских магм и их трансформации во времени и пространстве согласно меняющейся геодинамической обстановке. В то же время: связь всех проявлений с одним эруптивным центром, наличие промежуточных составов пород с тенденцией (трендом) резкого повышения их щелочности, хаотичность распределения составов минералов из пород разной щелочности и общность их полей на диаграммах, наличие минералов, не свойственных типоморфным парагенезисам породы, – все это предполагает взаимодействие двух магм в процессе поступления их к поверхности, что привело к образованию гибридных магм (см. рис. 2, рис. 5–8). Одним из признаков миграции щелочей в процессе вулканической деятельности служит наличие экзотических микровыделений щелочного полевого шпата в базисе основных масс базальтов нормальной щелочности, что можно рассматривать как проявление щелочного метасоматоза на уже консолидированную породу.

Дискретность составов минеральных парагенезисов вкрапленников (см. рис. 5-8) свидетельствует о прерывисто-стадийной кристаллизации пород и соответственно о скачкообразном изменении РТ условий кристаллизации магм в процессе всей вулканической деятельности. сформировавшей массив Плоских сопок. Перемещение материнских базальтовых расплавов нормальной и повышенной щелочности из глубинных источников их генерации к поверхности проходило транзитно с образованием в пределах верхних горизонтов литосферы системы промежуточных очагов, в которых магмы могли смешиваться. Концепция вероятного существования многоэтажной системы промежуточных очагов в вулканическом процессе признается большинством петрологов и отражена в монографии [Богатиков и др., 2010]. Обособившиеся в них базальтовая и трахибазальтовая магмы претерпевали дифференциацию, в результате чего сформировались базальт-андезибазальтовые ассоциации пород разной щелочности стратовулканов, а в случае их смешения возникали гибридные магмы. Изменение геотектонической обстановки в регионе, выразившееся в смене вулканизма центрального типа на трещинный, вызвало возмущение магматической системы и способствовало возобновлению вулканической деятельности, следствием чего явились массовые излияния магмы в позднеплейстоценовое-раннеголоценовое время [Ponomareva et al., 2013], сформировавшие наложенную региональную зону шлаковых конусов. Временной перерыв вулканической деятельности обеспечил благоприятную стабильную обстановку для фракционной дифференциации магм в промежуточных очагах, вероятно, локализованных в более высоких горизонтах литосферы, что способствовало образованию андезибазальтов и андезитов разной щелочности, которые преобладают среди продуктов извержений зоны шлаковых конусов. Находки в базальтах зерен граната, являющегося представительным минералом гнейсов и кристаллических сланцев [Ханчук, 1985], могут служить показателем того, что промежуточный очаг, продуцирующий базальтовую магму нормальной щелочности и ее производные, располагался в пределах протерозойского кристаллического фундамента. Наличие ксенолитов оливинитов и габброидов, которые слагают верхнемеловые интрузивные комплексы, в продуктах извержений зоны шлаковых конусов

Рис. 9. Диаграмма Ті–К для вулканитов массива Плоских Сопок.

 породы нормальной щелочности; 2 – породы повышенной щелочности. Тренды эволюции составов базальтов [Лутц, 1980]: І – геосинклинальных (островодужных), ІІ – континентальных рифтов, ІІІ – океанических.

предполагает существование промежуточных очагов также и на более высоком уровне в пределах верхнемеловой вулканогенно-осадочной толщи. Сопоставляя изложенное выше с данными о строении литосферы Камчатки, глубины локализации этих очагов представляются 10—15 и 5 км соответственно [Балеста и др., 1976, 1984; Мороз, Гонтовая, 2016; Мороз и др., 2016; Нурмухамедов и др., 2016; Федотов и др., 2010]. Предполагается, что трахибазальтовая и базальтовая магмы, поднимающиеся из глубинных источников их генерации, зачастую попадали в единый промежуточный очаг, где происходило их смешение. Наличие разноглубинных ксенолитов также подтверждает многоуровневую систему промежуточных очагов.

Протяженный ряд дифференциатов, высокие содержания глинозема (17–20%), преобладание порфировых структур, петрохимия и геохимия пород [Churikova et al., 2001], а также составы минеральных фаз свидетельствуют об островодужной природе лав массива Плоские Сопки [Фролова и др., 1989; Чурикова, 1993]. Тенденция эволюции пород, выраженная крутым трендом повышения щелочей, предполагает привнос щелочного флюида в магматическую систему в процессе вулканической деятельности, что приводит к повышению

щелочности базальтовых магм. Аналогичный сценарий был ранее предложен в работе [Churikova et al., 2001] для высококалиевых пород Центральной Камчатской депрессии. На диаграмме рис. 9 фигуративные точки пород массива Плоских Сопок базальтов обеих серий образуют непрерывное облако, а смещение таковых вулканитов повышенной щелочности к области рифтогенных ассоциаций свидетельствует о наложенном рифтогенезе.

Принципиальное сходство магмогенеза развития вулканических центров Плоских сопок и Толбачинского дола, выраженного во взаимосвязи магм разной шелочности. может свидетельствовать о сосуществовании автономных источников генерации базальтового и трахибазальтового расплавов в области верхней мантии под всей Ключевской группой вулканов [Флеров и др., 2015; Churikova et al., 2015а, б; Колосков и др., 2015]. Более того, подобная концепция сосуществования двух источников генерации базальтовой и щелочно-базальтовой магм и проявление их в едином вулканическом центре находит свое отражение в палеовулканизме в формировании полигенных вулканических массивов геологического прошлого [Флеров, Селиверстов, 2008; Колосков и др., 2011; Флеров и др., 2014, 2016].

выводы

1. Магматическая деятельность массива Плоских Сопок связана с проявлением базальтовых магм нормальной и повышенной щелочности. Базальтовый вулканизм, отражает ранний этап магматической деятельности – образование щитового вулкана, являющегося пьедесталом стратовулканов. Образование стратовулкана Ушковского наследует эруптивный центр предыдущего этапа и начинается с масштабных извержений высокоглиноземистой базальтовой магмы нормальной шелочности, а в дальнейшем его деятельность характеризуется синхронными извержениями из одного эруптивного центра базальтовой и трахибазальтовой магм, представленных соответственно дифференцированными сериями базальт – андезибазальт и трахибазальт – трахиандезибазальт. Завершается формирование стратовулканов чисто базальтовыми извержениями вулкана Крестовского. Вулканизм заключительного этапа деятельности массива Плоских Сопок знаменателен извержениями трахиандезибазальтовых-трахиандезитовых и в меньшей степени андезибазальтовых магм, являющихся производными трахибазальтовой и базальтовой магм. соответственно.

2. Вулканизм, сформировавший массив Плоских Сопок обязан функционированию двух глубинных источников генерации расплавов разной щелочности — базальтового и трахибазальтового, что свидетельствует о неоднородности вещественного состава субстрата верхней мантии. Поступление расплавов к поверхности происходило транзитно через систему промежуточных очагов, что обеспечивало дифференциацию магм на пути их продвижения.

3. Процессами, ответственными за эволюцию магм разной щелочности и образование различных типов вулканитов являются прерывисто-стадийная кристаллизационная и фракционная кристаллизации в промежуточных очагах и их смешение с образованием гибридных магм.

4. Вулканизм массива Плоских Сопок соответствует островодужному типу с признаками гибридизма и проявлением рифтогенных черт на заключительном этапе формирования.

СПИСОК ЛИТЕРАТУРЫ

Базанова Л.И., Мелекесцев И.В., Пономарева В.В. и др. Вулканические катастрофы позднего плейстоцена – голоцена на Камчатке и Курильских островах. Часть 1. Типы и классы катастрофических извержений – главных компонентов вулканического катастрофизма // Вулканология и сейсмология. 2016. № 3. С. 3–21.

Балеста С.Т., Иванов Б.В., Утнасин В.К., Аносов Г.Н. Строение земной коры Ключевской группы вулканов, особенности тектоники и вулканизма // Глубинное строение, сейсмичность и современная деятельность Ключевской группы вулканов. Владивосток: ДВНЦ СССР, 1976. С. 7–16.

Балеста С.Т., Зубин М.М., Каргопольцев А.А., Федорченко И.А. Глубинное строение района извержения // Большое трещинное Толбачинское извержение, Камчатка 1975–1976 гг. М.: Наука, 1984. С. 514–537.

Брайцева О.А., Мелекесцев И.В., Флеров Г.Б. и др. Голоценовый вулканизм Толбачинской региональной зоны шлаковых конусов // Большое трещинное Толбачинское извержение, Камчатка 1975–1976 гг. М.: Наука, 1984. С. 177–222.

Брайцева О.А., Мелекесцев И.В., Пономарева В.В. и др. Возраст действующих вулканов Курило-Камчатского региона // Вулканология и сейсмология. 1994. № 4/5. С. 5–32.

Богатиков О.А., Коваленко В.И., Шарков Е.В. Магматизм, тектоника, геодинамика Земли // Труды ИГЕМ РАН (новая серия). М.: Наука, 2010. Вып. 3. 605 с.

*Ермаков В.*А. Формационное расчленение четвертичных вулканических пород. М.: Недра, 1977. 225 с.

Иванов Б.В. Андезиты Камчатки. М.: Наука, 2008. 472 с.

Кокс К.Г., Белл Дж.Д., Панкхерст Р. Дж. Интерпретация изверженных горных пород. М.: Недра, 1982. 414 с.

Колосков А.В., Флеров Г.Б., Перепелов А.Б. и др. Этапы эволюции и петрология Кекукнайского вулканического массива как отражение магматизма тыловой зоны Курило-Камчатской островодужной системы. Часть 1. Геологическое положение и геохимический состав вулканических пород // Вулканология и сейсмология. 2011. № 5. С. 17–41.

Колосков А.В., Давыдова М.Ю. Избеков П.Э. и др. Эволюция состава пород Новых Толбачинских вулканов в ходе извержения 2012–2013 гг. – мантийный контроль в формате "онлайн" // Тихоокеанская геология. 1915. Т. 34. № 5. С. 19–39.

Коржинский Д.С. Кислотность-щелочность как главнейший фактор магматических и постмагматических процессов // Магматизм и связь с ним полезных ископаемых. М.: Госгеолтехиздат, 1960. С. 21–30.

Лутц Б.Г. Геохимия океанического и континентального магматизма. М.: Недра, 1980. 427 с.

*Мелекесцев И.В., Краевая Т.С., Брайцева О.*А. Рельеф и отложения молодых вулканических районов Камчатки. М: Наука, 1970. 247 с.

Мороз Ю.Ф., Гонтовая Л.И. О структуре литосферы Восточной Камчатки по геофизическим данным // Материалы региональной научной конференции "Вулканизм и связанные с ним процессы", посвященной Дню вулканолога, Петропавловск-Камчатский: ИВиС ДВО РАН, 2016. С. 237–246.

Мороз Ю.Ф., Логинов В.А., Улыбышев И.С. Глубинный геоэлектрический разрез области сочленения Срединного Камчатского массива, Ганальского выступа и Центрально-Камчатского прогиба // Вестник КРАУНЦ. Науки о Земле. 2016. № 1. Вып. 29. С. 17–34.

Нурмухамедов А.Г., Недядько В.В., Ракитов В.А, Липатьев М.С. Границы литосферы на Камчатке по данным метода обменных волн землетрясений // Вестник КРАУНЦ. Науки о Земле. 2016. № 1. Вып. 29. С. 35–52.

Петрографический кодекс. СПб.: ВСЕГЕИ, 2009. 198 с.

Пийп Б.И. Ключевская сопка и ее извержение в 1944— 45 гг. и в прошлом // Тр. Лаб. вулканол. 1956. Вып. 11. 308 с.

Сирин А.Н. О соотношении центрального и ареального вулканизма. М.: Наука, 1968.

Федотов С.А., Жаринов Н.А. Гонтовая Л.И. Магматическая питающая система Ключевской группы вулканов (Камчатка по данным об их извержениях, землетрясениях, деформациях и глубинном строении) // Вулканология и сейсмология. 2010. № 1. С. 3–35.

Флеров Г.Б., Овсянников А.А. Вулкан Ушковский // Действующие вулканы Камчатки. М.: Наука, 1991. С. 156–167.

Флеров Г.Б., Селиверстов В.А. Мел-палеогеновый магматизм Срединного хребта Камчатки: проблема источников магм // Вулканология и сейсмология. 2008. № 2. С. 83–96.

Флеров Г.Б., Ананьев В.В., Пономарев Г.П. Петрогенезис пород вулканов Острого и Плоского Толбачиков и соотношение вулканических проявлений базальтовой и трахибазальтовой магм на территории Толбачинского Дола (Камчатка) // Вулканология и сейсмология. 2015. № 3. С. 15–35.

Флеров Г.Б., Колосков А.В., Пузанков М.Ю. и др. Пространственно-временные соотношения вулканических ассоциаций разной щелочности Белоголовского массива (Срединный хребет Камчатки). Часть 2. Геология, минералогия и петрология вулканических пород // Вулканология и сейсмология. 2016. № 4. С. 3–26.

Флеров Г.Б., Перепелов А.Б., Пузанков М.Ю. и др. Пространственно-временные соотношения вулканических ассоциаций разной щелочности Белоголовского массива (Срединный хребет Камчатки). Часть 1. Геология, минералогия и петрология вулканических пород // Вулканология и сейсмология. 2014. № 3. С. 3–23.

Фролова Т.И., Перчук Л.П., Бурикова И.А. Магматизм и преобразование земной коры активных окраин. М.: Недра, 1989. 275 с.

Ханчук А.И. Эволюция древней сиалической коры в островодужных системах Восточной Азии. Владивосток: ДВНЦ АН СССР, 1985. 136 с.

Чурикова Т.Г. Геохимия и моделирование магматического процесса Ключевской группы вулканов / Автореф. дисс. ... канд-та геол.-мин. наук. М.: МГУ, 1993. 155 с.

Чурикова Т.Г. Петрохимия лав вулкана Ушковского // Вулканологические исследования на Камчатке. Петропавловск-Камчатский. 1990. С. 11–16.

Чурикова Т.Г., Соколов С.Ю. Магматическая эволюция вулкана Плоские Сопки, Камчатка (Анализ изотопной геохимии стронция) // Геохимия. 1993. № 10. С. 1439–1447.

Чурикова Т.Г., Гордейчик Б.Н., Иванов Б.В. Петрохимия пород вулкана Камень: сравнение с соседними вулканами Ключевской группы // Вулканология и сейсмология. 2012. № 3. С. 23–45.

Calkins J.A. ⁴⁰Ar/³⁹Ar geochronology of khapitsa plateau and studyonaya river basalts and basaltic andesites in Central Kamchatka depression, Kamchatka, Russia // Материалы IV международного совещания по процессам в зонах субдукции Японской, Курило-Камчатской и Алеутской дуг "Взаимосвязь между тектоникой, сейсмичностью, магмообразованием и извержениями вулканов в вулканических дугах". Петропавловск-Камчатский, 2004. С. 53–54.

Churikova T., Dorendorf F., Wörner G. Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation // J. Petrol. 2001. V. 42. \mathbb{N}_{2} 8. P. 1567–1593.

Churikova T.G., Gordeychik B.N., Ivanov B.V. et al. Relationship between Kamen Volcano and the Klyuchevskaya group of volcanoes (Kamchatka) // J. Volcanol. Geotherm. Res. 2013. V. 263. P. 3–21.

Churikova T.G., Gordeychik B.N., Iwamori H. et al. Petrological and geochemical evolution of the Tolbachik volcanic massif, Kamchatka, Russia // J. of Volcanol. and Geotherm. Res. 2015a. V. 307. P. 156–181.

Churikova T.G., Gordeychik B.N., Edwards B.R. et al. The Tolbachik volcanic massif: A review of the petrology, volcanology and eruption history prior to the 2012–2013 eruption // J. of Volcanol. and Geotherm. Res. 20156. V. 307. P. 3–21.

Peccerillo A., Taylor S.R. Geochemistry of Eocene calcalkaline volcanic rock from the Kastamonu area, Northern Tukey // Contrib. Mineral. Petrol. 1976. V. 58. P. 63–81.

Poldervaart A., Hess H.H. Pyroxenes on the crystallization of basaltic magma // J. Geol. 1951. V. 59. P. 472–489.

Ponomareva V., Portnyagin M., Derkachev A. et al. Early Holocene M ~ 6 explosive eruption from Plosky volcanic massif (Kamchatka) and its tephra as a link between terrestrial and marine paleoenvironmental records // Int. J. Earth Sci. 2013. V. 102. P. 1673–1699.