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Abstract—A new method is presented for statistical analysis of long-term time series of water level observa-
tions aimed at distinguishing short-term disturbances; observation data from the YuZ-5 well, located in the
Petropavlovsk Geodynamic Test Area, eastern Kamchatka, are considered. These data (from July 27, 2012,
to February 1, 2018) are remarkable for their degree of detail: the sampling rate of the water level and atmo-
spheric pressure measurements was 5 min and the sensitivity (accuracy) was ±0.1 cm for water level recording
and ±0.1 hPa for atmospheric pressure. Also, five strong earthquakes with Mw = 6.5–8.3 occurred at epicen-
tral distances of de = 80–700 km during the observation period. A thorough analysis of the hydrodynamic
regime of the observation well over a long period and the high quality of observation data, together with the
data on strong seismic events, allow us to consider the possibility of using formalized statistical methods of
water level data processing for diagnostics of anomalous conditions. As a result of factor and cluster analysis
applied to the sequence of multidimensional vectors of the statistical properties of water level time series in
successive one-day-long time windows, after adaptive compensation for atmospheric pressure, four different
statistically significant states of time series, replacing each other in time, are distinguished. Geophysical inter-
pretation of the anomalous conditions of the water level time series (with a probability of 0.013) is carried out
in comparison to strong earthquakes, technical conditions of observations, and seasonal features of the
hydrodynamic regime in the observation well. It is shown that this method of water level data processing can
detect short-term anomalies in the hydrogeodynamic regime of a well, significantly supplementing tradi-
tional processing of water level data aimed mostly at finding low-frequency trends in water level changes. This
method can be applied in geophysical monitoring and prediction of earthquakes from online processing of
water level data in wells.
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INTRODUCTION
Precise measurements of water level in wells allow

researchers to detect changes in groundwater pressure
in the range of periods from seconds and minutes to
tens and hundreds of days. The possible mechanisms
causing and affecting pressure variations are quasielas-
tic deformation of water-saturated rocks, development
of fracture dilatancy in them, and other processes
leading to changes in the capacity and permeability of
rocks (Kissin, 1993, 2009; Kopylova, 2006b). The sen-
sitivity of groundwater pressure to changes in the
stress–strain state of rocks allows the application of
water level data in a broad range of earth sciences
problems. Water level variations in wells are used to
study lunar and solar tides (Bredehoeft, 1967;
Rojstaczer and Agnew, 1989; Lyubushin et al., 1997;
Vinogradov et al., 2011). The possibility of assessing
variability in crustal properties from the response of
water level to variations of atmospheric pressure was

studied in (Lyubushin and Malugin, 1993; Lyubushin
and Lezhnev, 1995; Kopylova et al., 2001).

In seismoactive regions, water level measurements
are used to study how seismicity affects water level
variations through the effects of seismic waves, coseis-
mic deformation of water-saturated rocks, and hydro-
geodynamic earthquake precursors (Roeloffs, 1988;
Roeloffs et al., 1989; Igarashi and Wakita, 1991; Kis-
sin, 1993, 2009; Kopylova, 2006b; Kopylova et al.,
2010; Wang and Manga, 2010). Recent studies in
Kamchatka have shown that application of traditional
processing methods to water level measurement data
(Kopylova, 2001, 2006a), aimed at distinguishing low-
frequency trends in water level variations, can aid in
detecting hydrogeodynamic precursors (HPs) before
strong earthquakes. HPs are expressed as water level
changes in time reference intervals from a few tens of
days to months and years before earthquakes with
magnitudes of about 7–8 at epicentral distances of up
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to a few hundred kilometers from observed wells
(Kopylova et al., 2001; Kopylova, 2001, 2006a; Bol-
dina and Kopylova, 2017). Examples of successful
mid-term predictions of strong earthquakes in Kam-
chatka using HPs are provided in (Chebrov et al.,
2011; Firstov et al., 2016).

At the same time, the problem of distinguishing
relatively short-term anomalies in the hydrogeody-
namic regimes of wells, hidden in noise variations of
water level, is still disputable and needs to be solved as
applied to problems of searching for short-term HPs
and other geodynamic activity signals. The need to
diagnose earthquake precursors in water level time
series in a broad range of periods implies advances in
experimental data processing methods with the use of
formalized statistical analysis procedures for subse-
quent development of unified software applied for this
type of geophysical observations.

In the present article, we use time series from the
Yuz-5 well in Kamchatka to test the new statistical
analysis method; the used time series of water level
measurements has a sampling rate of 5 min, after
adaptive compensation for atmospheric pressure vari-
ations in it, by means factor and cluster analysis of the
sequence of multidimensional vectors corresponding
to eight statistical properties of the observation data
series in sequential time windows of one day long.
Four different statistically significant states, alternat-
ing in time, have been identified in variations within
the data series. Notably, three out of four of these
states are considered background ones, while one is
considered anomalous. Geophysical interpretation of
variations corresponding to the anomalous state is
made with respect to strong earthquakes, technical
conditions of observations, and other factors.

TECHNICAL CONDITIONS 
OF OBSERVATIONS AND INITIAL DATA
Since 2003, the Kamchatka Branch, Geophysical

Survey, Russian Academy of Sciences (KB GS RAS)
has been carrying out observations of water level
changes in the YuZ-5 well with an interval of 5 min
using instrumentation manufactured by LLC Poli-
nom, Khabarovsk (Kopylova et al., 2016).

The coordinates of the YuZ-5 well are 53.169° N,
158.414° E, and its depth is 800 m. In the depth range
from 0 to 310 m, the well shaft is cased in a metallic
pipe. At 310–800 m, the well shaft is open and directly
connected to water-bearing rocks represented by
interbedding of Late Cretaceous siltstones and shales.
The water permeability of rocks is 7.8 m2/day, and
groundwater mineralization is 0.25 g/L. The water
level is 1–1.5 m below the ground surface.

Water level changes demonstrated an intraannual
seasonal character with an amplitude of up to 50 cm
(Boldina and Kopylova, 2017), as well as barometric
and tidal variations (Kopylova, 2006a). Local strong
earthquakes cause coseismic and postseismic varia-
tions in water level changings. The hydrogeodynamic
precursors were retrospectively distinguished in water
level variations before the Kronotskoye (December 5,
1997, Мw = 7.8) and Zhupanovo (January 30, 2016,
Мw = 7.2) earthquakes (Kopylova, 2006a; Kopylova
and Boldina, 2012; Boldina and Kopylova, 2017). The
passage of surface seismic waves from the strongest
earthquakes with Мw of about 8–9 at epicentral dis-
tances of hundreds to thousands of kilometers due to
water level variations (hydroseisms) with amplitudes
of up to 9 cm and durations of several hours to one day.
More detailed data on the well structure, elastic and
filtering properties of water-saturated rocks, regulari-
ties of the hydrogeodynamic regime, and earthquake
effects in water level changes are presented in our ear-
lier publications (Kopylova, 2006a; Kopylova and
Boldina, 2006; Kopylova et al., 2010, 2016; Boldina
and Kopylova, 2016, 2017) and in publications by
other authors.

The instruments used are characterized by high
resolution (the recording accuracy is ±0.1 cm for water
level and ±0.1 hPa for atmospheric pressure), broad
dynamic range, and long-term stability and reliability
of continuous observations. In order to ensure the
integrity of the instruments, a protective reinforced
concrete building with a metal door was constructed
above the well head. Technical control of the observa-
tion system is carried out by the Laboratory of Geo-
physical Research and includes regular, at least quar-
terly, visits to the well in order to test the instruments
and perform maintenance. Dates and times of visits, as
well as the list of work done and test results, are docu-
mented in a special digital log. Processing and online
analysis of current data transmitted to KB GS RAS via
a cellular network are done by an operator on a daily
basis, providing additional opportunities to monitor
the technical state of the observation system.

In this study, we used time series of the water level
and atmospheric pressure measured from July 27,
2012, to February 1, 2018 (in total, 2015 days) with a
sampling rate (count interval) of 5 min (Fig. 1). The
complete duration of water level and atmospheric
pressure records is 580 605 five-minute counts. There
are 424 singular gaps in the data (0.007% of the total
duration of two time series); these gaps are related to
technical failures of the recording system. They were
taken into account by linear interpolation between the
values of the nearest recorded counts.

During the observations, there were 32 visits. Five
times operations were carried out to remove and install
sensors recording groundwater parameters in the
upper part of the well shaft. In particular, on April 16,
2014, and June 5, 2014, these operations entailed
removal and installation of a device for measuring
water temperature and electrical conductivity at a
depth of 20 m; on March 1, 2016, hoisting and running
of the water level sensor; on August 7, 2017, installation
SEISMIC INSTRUMENTS  Vol. 55  No. 5  2019
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Fig. 1. Data of 5-min observations of (a) atmospheric pressure and (b) water level in YuZ-5 well from July 27, 2012, to February 1, 2018,
compared with changes of (c) precipitation and (d) air temperature  based on data from Pionerskaya meteorological station, Kamchatka
Administration for Hydrometeorology and Environmental Control.
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of an additional water pressure sensor at a depth of
5.6 m; and on October 4, 2017, repeated hoisting and
running of the water level sensor with an amplitude of
≈20 cm. These technical operations were accompa-
nied by changes in water level, either a rise or drop with
an amplitude of 1–2 cm, with subsequent restoration
of the stationary regime in 6–8 h.

Strong Local Earthquakes and Hydrogeoseismic 
Variations of Water Level

The considered time interval has been remarkable
not only in the high quality of water level data, but also
in that five earthquakes with Mw = 6.5–8.3 occurred in
the Kamchatka and western Aleutian seismoactive
zones at epicentral distances of de = 80–700 km
(Table 1). The descriptions of events numbered 1 to 3
in Table 1, which occurred in 2013, are given in
(Sil’nye…, 2014). In (Chebrov et al., 2016), data on the
Zhupanovo earthquake are presented; in (Chebrov et
al., 2017), data on the Near Aleutian earthquake. In
the area of the well, these earthquakes were manifested
as shaking with an intensity from V to II–III on the
MSK-64 scale (Medvedev et al., 1965). All the men-
tioned earthquakes were reflected in the YuZ-5 well as
various hydrogeoseismic variations of water level.
Event nos. 1, 2, 4, and 5 (Table 1) were accompanied
by coseismic effects during the first minutes after rup-
ture at the earthquake source, as well as by longer-term
postseismic changes of water level. Retrospective
SEISMIC INSTRUMENTS  Vol. 55  No. 5  2019
analysis revealed that event no. 4 (Table 1) was pre-
ceded by an HP in the form of a water level rise by
28 cm over 3.5 months (Boldina and Kopylova, 2017).

COMPENSATION OF BAROMETRIC 
VARIATIONS IN WATER LEVEL CHANGES 

AND POWER SPECTRA
A change of atmospheric pressure is the main

meteorological factor affecting water level variation in
the YuZ-5 well in the range of periods from hours to
days (Fig. 1). Earlier, based on the behavior of the
amplitude transfer function from atmospheric pres-
sure variations to changes of water level, it was found
that barometric response of water level is characterized
by a constant value of barometric efficiency, Еb =
0.4 cm/hPa, in the range of periods from 6 h to a few
tens of days. In periods of 2–6 h, Еb increases mono-
tonically from 0.1 to 0.4 cm/hPa (Kopylova, 2006a,
2009).

Before statistical analysis of the measured water
level data, we need to remove the influence of atmo-
spheric pressure on the initial time series of water level
changes. For this, we applied a compensating adaptive
frequency filter (Lyubushin, 2007). In moving win-
dows of 28 day long (8064 counts), with a 5-min step
(1 count), we calculated power spectrum Suu(ω) of
atmospheric pressure and the complex cross-spec-
trum Sxu(ω) between the water level and atmospheric
pressure, depending on frequency ω. These estimates
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Table 1. Parameters of strong earthquakes based on data from KB GS RAS (http://www.emsd.ru/), Global CMT
(http://www.globalcmt.org), and NEIS USGS (https://earthquake.usgs.gov/earthquakes/search/)

No.

Hypocenter
Energy

Epicentral distance, 

de, km/shaking 

intensity on the 

MSK-64 scale

date

(dd.mm.yyyy)

and name of earthquake

time,

hh:mm

coordinates, deg

H, km
N E class, KS magnitude, Мw

1 28.02.2013 14:06 50.67 157.77 61 15.2 6.8 260/4–5

2 24.05.2013, Sea of Okhotsk 05:45 54.76 153.79 630 17.0 8.3 348/4

3 12.11.2013 07:04 54.63 162.45 72 15.0 6.5 300/3–4

4 30.01.2016, Zhupanovo 03:25 53.85 159.04 180 15.7 7.2 80/5

5 17.07.2017, Near Aleutian 23:34 54.35 168.90 7 16.1 7.8 700/2–3
are obtained by smoothing of periodograms and cross-
periodograms by a frequency window having a length
of 1/32 of the moving window length. Then, the fre-
quency transfer function Hxu(ω) = Suu(ω)/Suu(ω) was

calculated in every window. Before smoothing of peri-
odograms, tidal frequency bands of [1/11, 1/13] and

[1/23, 1/27] h−1 were suppressed and estimates within
the limits of these frequency bands were obtained by
interpolation of estimates from the adjacent frequency

values. The compensation value  in the fre-
quency zone within the limits of every time window
was calculated by the formula

, where is
the discrete Fourier transform from the water level and
atmospheric pressure within the current window. The
result of compensation ex(t) in the time zone within

the limits of every time window was determined by

inverse discrete Fourier transform from .

The final operation to obtain the compensated sig-
nal is sewing the compensation results within the lim-
its of different windows together to obtain entire sig-
nal. The contribution of the first window to this signal
is its first half, whereas the second half is taken from
the last window. Regarding the remaining “intermedi-
ate” time windows, only their central counts are taken
to form the entire signal.

Figure 2 shows the graphs of the initial and com-
pensated water levels, hereinafter, Uk(t)) series for the

first half of 2013 when the seismic events 1 and 2
(Table 1) occurred. We can see that tidal (Fig. 2c),
coseismic, and postseismic variations of the level are
distinguished much better in the compensated signal
Uk(t) (Fig. 2b) compared to the initial data (Fig. 2a),

where they are hidden by variations mainly caused by
atmospheric pressure.

Figure 3 shows the estimated power spectra of vari-
ations of the initial time series of water level and Uk(t)
series. The tidal harmonics of semidiurnal and diurnal
groups are clearly seen in Fig. 3a. In the range of tidal
periods in the power spectrum of Uk(t) series, nine

tidal waves are clearly seen (Fig. 3b). Note that weakly

( )xE ω�

( ) ( ) ( ) ( )x xuE X H Uω = ω − ω ω� � � ( ( ), ( ))X Uω ω� �

( )xE ω�
expressed spectral peaks at periods corresponding to
the higher overtones of diurnal variations (6, 4, and
2 h) remained after the compensation of atmospheric
pressure variations. These overtones occur as a result
of (a) temporally nonuniform heating and cooling of
air during the day and (b) the fact that the diurnal tem-
perature variation differs from a pure sine shape.
These temperature changes affect atmospheric pres-
sure and are accompanied by the corresponding water
level responses. We should also note how the power
spectrum straightens (on a double logarithmic scale):
after compensation of atmospheric pressure varia-
tions, the “hill” in the power spectrum at periods of 10
to 1000 h disappeared.

STATISTICAL PROPERTIES 
OF THE TIME SERIES OF COMPENSATED 

WATER LEVEL Uk(t)

Further analysis implies estimation of statistical
properties describing the behavior of water level time
series Uk(t) in sequential time frames and using of the

obtained values for identifying different states of the
time series. The length of time frame was chosen at
N = 288 counts (each 5 min long) corresponding to
one day.

Below we provide a brief description of eight used
statistics. They were selected taking into consideration
their previous applications to analyze other time series
in monitoring systems, notably, not only geophysical
ones (see the respective links below). It is remarkable
that these statistics are not linked to physical nature of
the analyzed signals. They describe very general prop-
erties of such time series as entropy, degree of differ-
ence from chaotic behavior, predictability, degree of
nonstationarity of the behavior, shape of power spec-
trum, etc. All estimates were made for the time series
representing augmentation of the compensated
groundwater level Uk(t) after application of winsoriza-

tion (Huber and Ronchetti, 2009) in an interval of
±3σ (hereinafter, x(t) series) in order to ensure the sta-
bility (robustness) of the obtained statistical estimates
to various surges.
SEISMIC INSTRUMENTS  Vol. 55  No. 5  2019
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Fig. 2. Changes of water level in YuZ-5 well in January–June 2013: (a) initial data recorded every 5 min; (b) data after compen-
sation for atmospheric pressure variations (Uk(t) series); (c) tidal variations. Arrows denote earthquakes; numerals correspond to
those in Table 1.
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Let x(t) be a finite sampling of some random sig-
nal, t = 1, …, and N be a discrete time index (count

marker). Let  be the wavelet coefficient of the ana-

lyzed signal, whose superscript index k is the number
denoting the level of detail of orthogonal wavelet
decomposition and subscript index j denotes the
sequence of centers of the time intervals in vicinities
the vicinities of which signal convolution c is calcu-
lated by the finite elements of the basis. We used
17 Daubechies orthogonal wavelets: ten normal bases
with the minimum carrier having from one to ten
clearable moments, and seven Daubechies simlets
(Mallat, 1999) with four to ten clearable moments. For
each basis, the normalized entropy of the distribution
the squared coefficients was calculated and the basis
providing the minimum entropy was found:

(1)

where m is the number of considered levels of detail;
Mk, the number of wavelet coefficient at level of

detail k. The number of levels m depends on the length

N of the analyzed sampling. For example, if N = 2n,

then m = n, Mk = 2(n – k). The condition N = 2n is nec-

essary for fast wavelet transform to be applied. If the
length N is not a power of two, the signal x(t) is supple-
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mented with zeros to attain the minimum length L
which is greater than or equal to N: L = 2n ≥ N. In this

case, among all values of 2(n – k) for all wavelet coeffi-

cients at level k, only N × 2–k coefficients correspond
to decomposition of the real signal, while the remain-
ing coefficients are zero due to addition of zeros to

signal x(t). Thus, in formula (1) Mk = N × 2–k

and the entropy is calculated using only “real” coeffi-

cients . Number Nr in formula (1) is equal to the

number of real coefficients, i.e., . By

construction, 0 ≤ En ≤ 1. The En statistics was used in
(Lyubushin, 2012, 2014) to study the prognostic prop-
erties of seismic noise in the region of the Japanese
Islands.

Donoho–Johnstone Index γ
When a wavelet basis is found for a given signal

from the minimum entropy condition, it is possible to
determine the set of least-modulus wavelet coeffi-
cients. In wavelet filtering, these wavelet coefficients
can be cleared before inverse wavelet transform in
order to “decrease noise” (Donoho and Johnstone,
1995; Mallat, 1999). We assume that noise is concen-
trated mainly in variations at the first level of detail.
Recall that the first level of detail corresponds to the
highest-frequency variations in the time series, char-
acterized by periods from 2Δt to 4Δt, where Δt is the
sample spacing. Due to the orthogonal character of
wavelet transform, the dispersion of the wavelet coef-

( )k
jc

1

m
r kk

N M
=

= ∑
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Fig. 3. Power spectra of water level variations in YuZ-5 well: (a) initial 5-min time series (1) and compensated Uk(t) time series
(2); (b) variations in Uk(t) series in range of tidal waves from diurnal (J1, P1S1, M1, O1, and Q1) and semidiurnal (S2K2, M2,
N2, and 2N2) groups. Names of tidal waves are after (Melchior, 1966).
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ficients is equal to one initial signal. Hence, we esti-
mate the standard deviation of noise as the standard
deviation of the wavelet coefficients at the first level of
detail. This estimate should be stable, i.e., insensitive
to surges in the values of wavelet coefficients at the
first level. For this, we can use the robust median esti-
mate of the standard deviation for a normal random
value:

(2)

where  is the wavelet coefficient at the first level of

detail and N/2 is the number of these coefficients. The
estimated standard deviation σ from formula (2)

determines quantity  as the natural threshold
for distinguishing noise-related wavelet coefficients.

{ }(1)
, 1,..., 2 0.6745,kmed c k Nσ = =

(1)

kc

2 ln Nσ
Quantity  is known in wavelet analysis as the
Donoho–Johnstone threshold, and its complete
expression is based on the formula for the asymptotic
probability of maximum evasion of Gaussian white
noise (Mallat, 1999). As a result, we can define the
dimensionless characteristics γ of the signal, 0 < γ < 1,
as the ratio of the number of the most informative
wavelet coefficients, for which the inequality

 is satisfied, to the total number N of all

wavelet coefficients. Formally, the larger the index γ,
the more informative (less noisy) the signal.

Wavelet Spectral Exponent β
For an optimal orthogonal wavelet, the mean val-

ues of the squared wavelet coefficients can be calcu-

2 ln Nσ

2 lnkc N> σ
SEISMIC INSTRUMENTS  Vol. 55  No. 5  2019



STATISTICAL ANALYSIS OF PRECISION WATER LEVEL DATA 513
lated at each level of detail: . The

mean value of the squared wavelet coefficients is the
part of the oscillation energy corresponding to level of
detail k. In other words, this value can be considered
an estimate of the power spectrum for signal x(t) in the
frequency band corresponding to level of detail k
(Mallat, 1999): [ , ] = [1/(2(k + 1)Δs), 1/(2kΔs)],

where Δs is the length of the sampling interval (in
this case, Δs = 5 min). The values of periods corre-
sponding to the centers of frequency bands are Tk =

2/(  + ) = 2Δs/(2–k + 2–(k + 1)). Quantities Sk =
S(Tk), k = 1, …, m, are analogous to ordinary Fourier

power spectra, with the only difference being that the
Sk values are much smoother—this feature is conve-

nient when calculating the spectral exponent (slope of
the curve of the logarithm of the power spectrum as a
function of the logarithm of the period). To calculate
the spectral exponent, let us consider the model
ln(S(Tk)) = βln(Tk) + c + εk, where εk is a sequence of

independent random values with zero average. Param-
eter β can be called the wavelet spectral exponent, the
value of which can be found by the least squares

method: .

Autoregression Model

Now let us use the autoregression model (Box and
Jenkins, 1970; Kashyap and Rao, 1976) for the x(t)
time series. Let us write it in general form:

(3)

Here, the integer p ≥ 1 denotes the order of autoregres-

sion and vector c = ( ,…, , d(p))T is the vector

of unknown parameters. The superscript (p) in for-
mula (3) emphasizes that the used autoregression

model is of order p. Here,  are the autoregression

coefficients, d(p) is the static displacement parameter,

and e(p)(t) is the residual signal with zero average and

dispersion . Model (3) can be written in concise

form:

(4)

Let there be a finite sampling {x(t), t = 1, …, N}.
Then, the estimate of parameter vector c from the con-
dition of minimum sum of squared residuals

 is reduced to solution of a

system of normal equations with a symmetric posi-
tively determined matrix A:

2( )

1

kM k
k j kj

S c M
=

= ∑
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kf ( )
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(5)

The complete parameter vector of model (4) is

θ(p) = (cT, σp)
T.

Below, we use, along with other parameters, the

values of coefficient  from the first-order autore-
gression model and the logarithm of residual disper-

sion in this model, , to characterize fragments of
the time series.

Index of Linear Predictability cPred

The index of linear predictability was introduced in
(Lyubushin, 2010; see also (Lyubushin, 2012)). Let us
consider the value cPred = V0/VAR – 1. Here, V0 is the

dispersion of error  in a trivial prediction

 by one step forward for signal x(t) which
equals the mean value on the previous “small” time
window having length of n counts:

. Thus,  =

 and ,

where N > n is the number of counts in sequential
“big” time fragments. The value VAR is calculated by

the analogous formula ,

where is the error in

linear prediction  by one step forward using
second-order autoregression (AR) model, whose coef-
ficients are also estimated by the previous “small”
time window with a length of n counts.

Second-order autoregression was chosen because
this was the minimum order for the AR model for
which oscillating motion is described and the maxi-
mum of the spectral density of the AR model can fall
within the frequency band between Nyquist and zero
frequency. AR prediction employs the correlation
property for adjacent values, and if there is correlation,
VAR < V0 and cPred > 0. The length of “big” time win-

dow N = 288; the length of “small” one was n = 48.

Autoregression Measure of Signal Nonstationarity R2

Let x(t) be the studied signal; n, half-length of the
moving window (hereinafter, short); τ, the center of
the double moving window, which, as a result,
includes counts t satisfying the condition τ – n ≤ t ≤
τ + n. Let us construct the scalar autoregression
model (5) of order p = 2 for signal x(t) for the left and
right halves of the short window. Estimating the model
independently of samplings that fall to the left and
right halves of the double moving window, we obtain

1

1

, ( ) ( ),

( ) ( ).

N
T

t p
N

t p

Ac R A Y t Y t

R x t Y t

= +

= +

= =

=

∑

∑

(1)

1a

2

1lg σ

0( 1)tε +
0ˆ ( 1)x t +

0 1
ˆ ( 1) ( )

t

s t n
x t x t n

= − +
+ = ∑ 0( 1)tε +

0ˆ( 1) ( 1)x t x t+ − + 0

2

0
1

( ) ( )
N

t n
V t N n

= +
= ε −∑

2

1
( ) ( )

N
AR ARt n

V t N n
= +

= ε −∑
ˆ( 1) ( 1) ( 1)AR ARt x t x tε + = + − +

ˆ ( 1)ARx t +



514 KOPYLOVA et al.
parameter vectors  and , respectively. Let

Δθ =  –  be the difference between the esti-

mated vectors in the left and right halves of the moving
time window.

If the behavior of the studied signal in the left and
right halves differs considerably, the difference Δθ will
increase. In order to “weigh” vector Δθ, it is logical to
use Fisher matrix s a metric one, because it defines the
rate of change in the likelihood logarithmic function
in the vicinity of the point with maximal matrix
parameters, including second derivatives from the
conditional likelihood logarithmic function of the
autoregression model:

(6)

Let us denote B(1) and B(2) matrices calculated on the
left and right halves of the moving window, respec-
tively. Then, the measure of nonstationary behavior
for process x(t) in the symmetric vicinity of point τ
will be

(7)

In formula (7), the half-sum of the lengths of the
parameter difference vector Δθ, measured with metric

matrices B(1) and B(2), is divided into (n – p) counts in
the left and right halves of the moving window, with
the number of autoregression parameters being sub-
tracted. Such a metric provides a natural dimension-
less measure of nonstationarity in the behavior of the
studied signal. Through simple manipulations, we
obtain the following expression:

(8)

which is useful when calculating the nonstationarity
measure (7). The measure of nonstationary behavior
was introduced in (Lyubushin et al., 1999; see
also (Lyubushin, 2007)). In (Osorio et al., 2011) statis-
tics (7) were used to analyze electroencephalograms
during epilepsy studies, while in (Lyubushin and Far-
kov, 2017), it was used to analyze financial time series.

Using formulas (7) and (8), we can find another,
more stable measure of nonstationary behavior of the
studied signal within the limits of a long time interval,
including N sequential counts. Let us take a short win-
dow having a radius of n counts, 2n + 1 < N, and com-

pute the measure of nonstationary behavior r2(τ) for
all possible positions of central point τ within the lim-
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its of a long window, for which a short window falls
completely inside the long one. It is easy to find that
the number of such positions of central point τ equals
N – 2n. Let us find the integral nonstationarity mea-

sure R2 for a long window as the median of r2(τ) values
for all acceptable values of central point τ of a short
window within the limits of a long one. In our calcula-
tions, we used windows with lengths N = 288 and n =
48. Hereinafter, we will consider the logarithm of the

nonstationarity measure, lgR2.

Excess Coefficient
Excess coefficient κ is determined by the formula

κ = M(x4)/(M(x2))2 (Cramer, 1999). It characterizes
the acuteness of the probability density graph in the
distribution of random value x with a nonzero average,
yielding the measure of deviation of the probability
density from the normal law with κ = 3. Here, the
operation M(…) means calculation of mathematical
expectation—in this case, the simple sample average
of a random value. The excess coefficient is usually
understood as value of κ (see above) with subtraction
of 3 so that excess will be zero for the normal law.
However, hereinafter, we will consider the logarithm
of excess logκ instead; therefore, no subtraction of 3 is
done in order to ensure positive values of this loga-
rithm

Thus, for each one-day-long time window, there
are eight parameters characterizing various statistical
properties Uk(t) of the time series within the limits of

this window: minimum normalized entropy of wavelet
coefficients En, Donoho–Johnstone index γ; coeffi-

cient  and dispersion logarithm  in the first-

order autoregression model; index of linear predict-
ability cPred and the logarithm of the nonstationarity

measure lgR2, which are based on the second-order
autoregression model; wavelet spectral exponent β;
and the logarithm of excess coefficient lgκ.

Let us denote the 8D attribute vector, whose attri-
butes characterize the statistical properties of the aug-
mentation time series Uk(t) within the limits of

sequential one-day-long fragments (288 counts with a
5-min step) as follows:

(9)

Figure 4 shows changes in individual components
of the 8D vector ζ of attributes of the augmentation
series Uk(t) as a function of the position of the right

end of sequential one-day-long time windows.

FACTOR ANALYSIS OF THE ATTRIBUTE 
VECTOR OF THE TIME SERIES

Now let us attempt to identify different states in the
history of the time series of observed changes of
groundwater level using cluster analysis of the 8D

(1)

1a 2

1lg σ

(1) 2 2

1 1 Pred( , , , lg , , lg , , lg ).En a c Rζ = γ σ β κ
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Fig. 4. Diagrams of eight properties of time series of water level increments, with atmospheric pressure compensated, Uk(t), in
one-day-long sequential windows.
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attribute vector (9). In order to formally subdivide the
obtained cloud of vectors ζ into clusters, let us prelim-
inarily reduce the dimension using factor analysis. In
our case, the factor analysis model (Harman, 1967) is
described by the following formula:

(10)

where 8D vector z is obtained from vector ζ through
normalization, implying that the sample average is
removed and every component of vector ζ is divided by
the sample estimate of the standard deviation. After
normalization, the correlation matrix Rzz is calculated.

In formula (10), f means the vector of dimension
q < p = 8, consisting of underlying factors (certain ran-
dom vectors governing the values of scalar compo-
nents of multidimensional vector z via multiplication
by the matrix of factor loads Λ having p lines and q col-
umns. The elements of matrix Λ = (λja), j = 1,…, p;

a = 1, …, q are unknown parameters of the model, and

,z f e= Λ +
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they need to be found, having a sample estimate of the

correlation matrix Rzz of the initial data. Let us assume

that the number of underlying parameters q is known.

Regarding the random vector f, we also assume that its

average value is zero, M{ƒ} = 0, and its covariation

matrix is unity, M{f · f T} = Iq, where Iq is a q-dimen-

sional unity matrix.

This condition means orthogonality of factors

(their independence in the Gaussian case). The con-

dition of the dispersion of orthogonal factors being

equal to unity is, in a certain sense, a normalization,

otherwise this can be attained by scaling the elements

of matrix Λ. Vector e in formula (10) has the same

dimension as the initial vector z and consists of ran-

dom values describing noise on every component of

vector z, i.e., not carrying the desired signal. Since

noise on different components should be indepen-

dent, it is assumed that vector e is centered and its
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covariation matrix is diagonal: M{e ·
eT} = Ψ2 = diag{ ,…, }, where , j = 1, …, p are

the so-called residual variances or noise dispersions.

The elements of diagonal matrix Ψ2 are also the
parameters of model (10).

The most reliable and simplest way to identify the
parameters of model (10) is the minimum residual
method (Harman, 1967). It is easy to find from the
conditions of diagonality of the covariation matrices of
vectors f and e that, due to model (10), the covariation
matrix of vector z is

(11)

The minimum residual method implies determina-
tion of the elements of matrix Λ from the condition of
the minimum sum of the squared differences between
sample estimates and theoretical values of paired cor-
relation factors. Thus, the criterion of model proxim-
ity to the data is the proximity of all theoretical cor-
relation factors to their sample estimates. Let rij denote

elements of matrix Rzz. Then, it is necessary to mini-

mize the next function of elements of the factor load-
ing matrix:

(12)

Note that elements of matrix Λ should have the fol-
lowing limitations imposed

(13)

which follow from the condition that the diagonal ele-
ments of the theoretical correlation matrix be equal to
unity (13). It should be noted that the problem of
determining matrix Λ is independent of determining

the diagonal matrix of residual dispersions Ψ2. After
the problem of finding the minimum (12) under lim-
itations (13) is solved, residual dispersions can be
found automatically:

(14)

After the factor loading matrix is found, at the final
step of analysis, it is necessary to calculate the realiza-
tions proper of orthogonal factors, namely, clouds of
q-dimensional vectors f. The simplest estimate follows
from the condition that noise vector e is distributed in
accordance with a p-dimensional normal distribution

with covariation matrix Ψ2. In this case, the maximum
likelihood estimator will be the estimate of the
weighted least squares method:

(15)

However, estimate (15) yields the vector of general
factors with a nondiagonal covariation matrix. In
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order that the components of factor vector be orthog-
onal, it is necessary to apply a modified version of
(15), proposed in (Anderson and Rubin, 1956):

(16)

The aim of obtaining realizations of general factor
vector f is to decrease the dimension of the problem
(Aivazyan et al., 1989). The most complicated prob-
lem in factor analysis is selecting the number q of gen-
eral factors (i.e., the dimension of vector f). We pro-
pose to solve it using the Rippe criterion (Lawley and
Maxwell, 1971), which is based on the assumption of a
normal distribution of vectors z. However, this crite-
rion has demonstrated a high sensitivity to small devi-
ations from normality, making it almost inapplicable.
If there is no a priori information about number q, the
estimate of maximum acceptable number of general
factors can be obtained by solving the problem starting
from the minimum value, q = 1, and gradually adding
unity until the factor analysis model degenerates (i.e.,
the total number of parameters becomes excessive).
After this, the last maximum value before degenera-
tion can be taken as the value of q. Degeneration of the
factor analysis problem is referred to as the Haywood
case (Harman, 1967) and implies muting of the resid-

ual dispersion  for one or several components of

vector z. In fact, instead of muting, an abrupt decrease
(by several orders of magnitude) in residual dispersion
is observed for some component in comparison to the
other components.

We used precisely this method of selecting the
q value, and the maximum acceptable number of gen-
eral orthogonal factors appeared to be q = 3. Figure 5
shows the diagrams of three general orthogonal factors
F1, F2, and F3 for the set.

CLUSTER ANALYSIS OF ORTHOGONAL 
COMMON FACTORS

After decreasing the dimension of the set of vectors
of statistical properties for the Uk(t) time series by tran-

sition to consideration of three general orthogonal fac-
tors, let us identify clusters in the space of general fac-
tors F1, F2, and F3 by applying the method of k-
means (also known as ISODATA) (Aivazyan et al.,
1989; Duda and Hart, 1973). In our case, the classifi-
cation objects are points in three-dimensional Euclid-
ean space, and each component of these vectors has a
zero average and standard deviation of unity. There-
fore, it is logical to introduce ordinary Euclidean dis-
tance between vectors. Let us consider the cloud of
three-dimensional vectors f of general orthogonal fac-
tors. Inside the minimum parallelepiped containing
the points f being classified, the centers of test clusters
are randomly located, and the number q ≥ 2 of such
clusters is fixed. Let Γ denote the initial random posi-
tion of test clusters. For the given arrangement of cen-
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Fig. 5. Diagrams of orthogonal general factors F1, F2, and F3 for set of eight properties of water level time series with atmospheric
pressure compensated, Uk(t) (uppermost panel), in one-day-long sequential windows. Arrows denote earthquakes, numerals cor-
respond to those in Table 1.
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ters of clusters, test partitioning of the set of points is
performed by the principle of minimum distance to
some center. Let ck with k = 1,…, q be the vectors of

the centers of clusters; nk, the number of points in the

kth cluster; and , the total number of

points in the partitioned set.

In our case, M = 2015, which corresponds to the
number of sequential time intervals that are one day
long. Let Bk be the set of vectors belonging to the kth

cluster. Let us calculate the vectors of the centers of

gravity of the obtained clusters: . If

ck = rk for all vectors, then partitioning ends; other-

wise, the vectors of the centers of clusters ck are shifted

to centers of gravity rk, another partitioning into clus-

ters is done, new centers of gravity of clusters are
found, the condition for the end of partitioning is
checked, and so on. The procedure converges quickly;
however, the partitioning of clusters obtained after all
iterations depends on the random positions of centers
of test clusters Γ before the start of iterations. The
number of final partitioning is estimated by the cluster
density criterion:
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(17)

For the set number of clusters q, we will find the

random initial position of Γ for which the value of (17)

is minimum. This is attained by the Monte Carlo

method: random experiments on placing centers of

test clusters within the limits of the cloud of points are

repeated many times (below, when analyzing the cor-

rectness of data, there are 104 tests), and then the par-

titioning with the minimum Γ is chosen.

Next, we solve the problem of determining the

optimal number of clusters into which the set of attri-

butes should be partitioned. Let . If

we sequentially reduce the number of test clusters q
from some quite large value to the minimum q = 2,

then J0(q) will decrease monotonically; however, for

the optimal value of clusters (if it exists), it will be dis-

rupted. A more effective method of finding the opti-

mal number of clusters is borrowed from dispersion

analysis and implies that pseudo-F-statistics are used

(Vogel and Wong, 1979):
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Fig. 6. Diagram of pseudo-F-statistics for clustering of three orthogonal general factors F1, F2, and F3.
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Fig. 7. Sequential transitions between four clusters of statistical properties of one-day-long fragments of time series of water level
increments, Uk(t), in YuZ-5 well.
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where is the common center of gravity of

the entire set of points being classified. The optimal
number of clusters corresponds to the point where
function (18) is maximum.

Figure 6 shows the dependence of pseudo-F-statis-
tics on the number of test clusters; it is seen that the
optimal number of clusters in the space of orthogonal
general factors F1, F2, and F3 is four.

Figure 7 shows the sequence of transitions between
the four distinguished states of the Uk(t) time series.

Out of 2015 values (day), state 1 distinguished by clus-

2
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( ) ( ) (( 1) ( )),

q

k k
k

PFS q M q n c r q J q
=

= − − −∑

0r f M=∑
ter 1 was manifested 27 times; state 2, 810 times;
state 3, 722 times; and state 4, 456 times. Thus, the
probability of finding the time series in every distin-
guished state (Fig. 7) is 0.013, 0.402, 0.358, and 0.226,
respectively. Hence, state 1, distinguished by cluster 1,
can be considered anomalous, whereas the rest of the
three states distinguished by clusters 2–4 can be con-
sidered background states.

GEOPHYSICAL INTERPRETATION 
OF THE STATISTICAL ANALYSIS RESULTS

As a result of the processing of water level data dis-
cussed above, the time series of statistical parameters
of the time series Uk(t) were obtained, including the set
SEISMIC INSTRUMENTS  Vol. 55  No. 5  2019
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Fig. 8. Time distribution of (a) cluster 1 in comparison with (b) Uk(t) time series, strong earthquakes (indicated with arrows,
numerals correspond to those in Table 1), and dates of maintenance works with maintenance to well (grey crosses). Explanations
on panel (c) are in text.
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of eight properties of time series (Fig. 4), three orthog-

onal general factors F1, F2, and F3 (Fig. 5), and man-

ifestations of four clusters of statistical properties of

one-day-long fragments (Fig. 7). The sampling rate of

all statistical parameters is one day for a time series

length of 2015 days.

Further analysis of the obtained statistical parame-

ters was aimed at assessing their sensitivity to various

natural and technogenic effects on the hydrogeody-

namic regime of the well. The main focus was to ana-

lyze the relationship between manifestations of anom-

alous cluster 1 (Fig. 7) and disturbed states of the stud-

ied object. Dates of disturbances in hydrogeodynamic

regime due to coseismic variations of water level

during strong earthquakes (Table 1) and five cases of

methodical works carried out, associated to the main-

tenance to the well shaft, are known and their total

number is ten (Fig. 8).

Out of five dates of strong earthquakes (Table 1),

four cases (all earthquakes except for no. 3) were

marked by the display of cluster 1 (Fig. 8a), whereas

the earthquake of November 12, 2013 was not accom-

panied by manifestation of cluster 1. Note that this

earthquake had the minimum magnitude and its

intensity shaking in the area of the well was I = III–IV,

coseismic and postseismic effects did not manifest in

5-min variations of water level.
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In all five cases of technical operations associated
with maintenance, cluster 1 was manifested. Thus, out
of ten known cases of a disturbed hydrogeodynamic
regime of the well, nine cases (90%) were character-
ized by anomalous cluster 1, indicating a sufficient
sensitivity of the considered method of processing of
the water level data in order to diagnose short-
term disturbances in hydrogeodynamic regime of the
YuZ-5 well.

In cases of perceptible local and strong distant
earthquakes, durations of coseismic and postseismic
effects in water level variations are usually no longer
than a few tens of minutes or a few hours at maximum.
After these earthquakes, the hydrogeodynamic regime
of the well is restored relatively quickly because of the
quite high water permeability of water-bearing rocks

(7.8 m2/day). For the same reason, restoration of the
water level disturbed during technical maintenance is
also restored in no more than 6–8 h. Thus, the one-
day-long interval of assessing the statistical properties
of the studied time series is sufficient for diagnosing
relatively short-term disturbances of the hydrogeody-
namic regime of the well.

In cases of the three strongest local earthquakes
accompanied by shaking of I = V or more on the
MSK-64 scale, postseismic variations of water level
evolved for as long as several months, e.g., the drop of
water level after the earthquake of March 28, 2013,
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lasted for a month and a half (Fig. 2b). The considered
method of processing water level data does not allow
us to distinguish hydrogeoseismic variations of that
length. They are diagnosed by the traditional method
of finding low-frequency trends in water level changes
after compensation for atmospheric pressure varia-
tions and suppressing diurnal and semidiurnal tidal
variations of water level (Kopylova, 2001, 2006a,
2009).

If we exclude from consideration nine cases when
cluster 1 was manifested due to disturbance of hydro-
geodynamic regime of the well during coseismic
effects and technical maintenance (33%), there are
still 18 other cases (67%) where it was manifested
(Fig. 8c). We think that possible causes of cluster 1
manifestation may be short-term fluctuations of
hydrodynamic pressure, water level variations caused
by seismic waves traveling from strong distant earth-
quakes (hydroseisms), preparation of strong local
earthquakes, extreme meteorological conditions
(cyclones, strong gusts of wind, abrupt changes in
atmospheric pressure), and technogenic effects on the
regime of the well located in the residential zone of the
town of Yelizovo, near its airport and highway.

Fluctuations of the Hydrostatic Pressure Head
The eight cases of manifestation of cluster 1 (verti-

cal lines 7–9 and 10–14 in the lower panel of Fig. 8)
fall in time intervals from April to May in 2014 and
2015. These were years when no strong earthquakes
occurred in Kamchatka and normal seasonal varia-
tions of water level were observed. This shows that
anomalous cluster 1 can be related to the processes
forming groundwater pressure. Earlier, peculiarities in
the seasonal formation of water pressure in the area of
the YuZ-5 well were considered in (Boldina and
Kopylova, 2017), where the intraannual curve of
changes of hydrostatic pressure based on interannual
observations was provided. In accordance with this
curve, the period of April–May is when the minimum
water pressure transits to growth due to the change of
the phase characterized by predominant run-off in
depth (seasonal drop of water level) to the phase char-
acterized by infiltration recharge and growth of pres-
sure (increase in water level). The most probable cause
of the appearance of cluster 1 in April–May is short-
term variations in water pressure due to infiltration
recharge of groundwaters and local effects of ground-
water f low between particular layers of water-bearing
rocks with different filtering properties.

Hydroseisms
Variations of water level during the passage of seis-

mic waves from strong distant earthquakes can also
cause manifestation of cluster 1. For example,
cluster 1, numbered 18 in Fig. 8c, coincides with the
date (January 23, 2018) of the earthquake in Alaska
(Mw = 7.9, according to the USGS), which occurred at

an epicentral distance of de = 3400 km. This earth-

quake was accompanied by water level oscillations in
the YuZ-5 well (7 cm in amplitude for a duration of
15 min).

According to the USGS, there were other strong
earthquakes that occurred in the world during the
observations at the YuZ-5 well: April 1, 2014, Chile,
Mw = 8.2, de = 13300 km; April 25, 2015, Nepal, Mw =

7.8, de= 6100 km; September 16, 2015, Chile, Mw =

8.3, de = 14 600 km; and September 8, 2017, Mexico,

Mw = 8.1, de = 7400 km. Seismic waves from these

earthquakes were accompanied by weak variations of
water level of the YuZ-5 well for 1–6 h, with ampli-
tudes ranging from 0.4 to 2 cm. Notably, cluster 1 was
not manifested on the days of these earthquakes.

Influence of Earthquake Preparation

The influence of processes related to earthquake
preparation as a possible cause of anomalous states in
the well regime and manifestation of cluster 1 was con-
sidered by comparison of the time when strong local
earthquakes occurred (Table 1) and manifestations of
cluster 1 before them in the period of up to several
months. Emphasize that nine cases when cluster 1 was
related to coseismic and known technogenic effects
were excluded from consideration.

We assumed that anomalous cluster 1 could have
been manifested in a period of up to several months
before earthquakes (Table 1 and arrows in Fig. 8a) due
to short-term disturbances of the hydrodynamic
regime of the well owing to preparation of seismic
events. This assumption is based on spatiotemporal
regularities of how hydrogeological (hydrogeody-
namic and hydrogeochemical) precursors were mani-
fested before the strong earthquakes in Kamchatka
region, as revealed from observations of groundwater
parameters in deep wells of the Petropavlovsk Geody-
namic Test Area. It was shown in (Kopylova, 2006a,
2006b) that precursors related to the water level and
chemical composition of groundwater are observed
before earthquakes with Mw = 6.6–7.8 at epicentral

distances of up to a few hundred kilometers over a few
weeks to nine months. For example, before the Zhu-
panovo earthquake, a hydrogeodynamic precursor
was observed in well YuZ-5 over the course of
3.5 months (Boldina and Kopylova, 2017).

Taking into account such factors as the sensitivity
of cluster 1 to short-term disturbances of the hydrody-
namic regime of the well and general regularities of the
relationship between hydrogeological precursors and
strong Kamchatka earthquakes, we can think that nine
cases when cluster 1 manifested (nos. 1–3, 4, 5–6, 15,
and 16–17) could be related to the earthquake prepa-
ration processes from Table 1. The forecast time inter-
val of cluster 1 manifestation before earthquakes
SEISMIC INSTRUMENTS  Vol. 55  No. 5  2019
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(Table 1) was from 25 to 220 days, 72 days or
2.4 months on average (Fig. 8c).

Brief analysis of possible causes of manifestation of
cluster 1 shows that it may be related to both seismic
and other natural and technogenic factors. This
should be taken into consideration when applying the
considered method of statistical processing of water
level data in problems of geophysical monitoring and
searching for earthquake precursors.

CONCLUSIONS

The presented method of statistical processing of
water level data implies detection of an anomalous
cluster of three orthogonal factors in variations of the
set including eight statistical parameters in one-day-
long intervals of 5-min series of water level variations
after compensation for atmospheric pressure influ-
ence and allows short-term disturbances of hydrogeo-
dynamic regime of the studied well to be diagnosed.
This method significantly augments the traditional
approach, which entails processing of water level data
with the identification of a low-frequency trend in
water level changes and the respective low-frequency
signals in changes of groundwater pressure.

The test of sensitivity of the method for distin-
guishing short-term disturbances of the hydrogeody-
namic regime of a well using known coseismic and
technogenic effects indicates its sufficient reliability.
The majority (nine out of ten) of these disturbances
were diagnosed by the appearance of an anomalous
cluster; i.e., these disturbances were distinguished
using the considered experimental data processing
method. This shows that the proposed method can be
applied to geophysical monitoring in the Kamchatka
region to identify short-term disturbances of the
hydrogeodynamic regime of the YuZ-5 and other
monitoring wells, including the possible effects in
water level changes at the preparation stage of strong
earthquakes. We emphasize that the important condi-
tions for applying the method are the continuous char-
acter of observation data, high quality of initial data,
and application of a procedure to compensate for
atmospheric pressure variations in water level changes.

It has been found that a considerable fraction
(67%) of cases when anomalous cluster was mani-
fested had no clear relationship to either seismic or
technogenic processes, and this should be taken into
consideration when applying the considered method
in problems of geophysical monitoring and searching
for earthquake precursors. Nevertheless, the
undoubted advantage of the proposed method is its
ability to reveal noisy short-term anomalous states of
observation wells in the real-time processing of large
datasets of water level measurements, which is not
provided by traditional methods.

The problem on the optimal choice of statistical
parameters characterizing the properties of Uk(t) time
SEISMIC INSTRUMENTS  Vol. 55  No. 5  2019
series within sequential one-day-long time frag-
ments—i.e., the dimension and composition of
parameter vector ζ in formula (9)—remains open. To
verify the applicability of the method for distinguish-
ing short-term disturbances of the well regime, we car-
ried out experiments with different sets of statistics,
from eight (present work) to 12, with inclusion of one
to four time series of additional parameters in ζ and all
other conditions of calculations remaining the same.
In all variants of these calculations, we obtained the
same results: three general orthogonal factors describ-
ing the used statistical sets are distinguished, and then
four clusters are obtained in the space of orthogonal
general factors; one of these clusters is manifested with
a low probability and could be considered anomalous.
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