ВОССТАНОВЛЕНИЕ ОПТИЧЕСКИХ ПАРАМЕТРОВ ВУЛКАНИЧЕСКОГО H₂SO₄ ПО СПУТНИКОВЫМ ДАННЫМ

Филей А.А.¹, Гирина О.А.², Сорокин А.А.³

¹Дальневосточный центр ФГБУ «Научно-исследовательский центр космической гидрометеорологии «Планета», г. Хабаровск, Россия ²Институт вулканологии и сейсмологии ДВО РАН, г. Петропавловск – Камчатский, Россия ³Вычислительный центр ДВО РАН, г. Хабаровск, Россия

e-mail: vmer@dvrcpod.ru, girina@kscnet.ru, alsor@febras.net

Работа посвящена методике восстановления оптических параметров вулканического H_2SO_4 по данным радиометра АНІ спутника Нітаwari-8. Методика основана на использовании оптических моделей для различных смесей аэрозольных компонентов вулканического облака, представленных пеплом, кристаллами льда, каплями воды и каплями H_2SO_4 . Использование многокомпонентных оптических моделей различного аэрозольного состава позволило оценить оптическую толщину и массовое содержание H_2SO_4 в сернокислом облаке, образованном после извержения вулкана Карымский 3 ноября 2021 г. Был проведен комплексный анализ спектральных характеристик сернокислого облака в коротковолновом и инфракрасном диапазоне длин волн, по результатам которого установлено, что сернокислое облако преимущественно представляет собой смесь капель H_2SO_4 и воды.

Вулканические извержения являются источником выброса в атмосферу аэрозольных частиц и малых газовых составляющих. Вулканические облака, как правило, состоят из пепла, водяного пара (H₂O), двуокиси серы (SO₂) и водного раствора серной кислоты (H₂SO₄). Попадая в верхние слои атмосферы, частицы вулканических облаков могут переноситься на большие расстояния и находиться там недели или даже месяцы. Выбросы высоких концентраций вулканического пепла и газов могут повлиять не только на здоровье человека и разрушение экосистемы вблизи вулкана, но и оказывать влияние на климат планеты и авиасообщение.

Для решения задач обнаружения вулканических облаков и определения их оптических характеристик в настоящее время получили широкое распространение данные дистанционного зондирования Земли из космоса. Установленные на космических аппаратах (КА) приборы позволяют получать информацию о характеристиках вулканического облака в различных спектральных диапазонах длин волн. В настоящей работе представлена методика восстановления оптических параметров H_2SO_4 по данным радиометра АНІ геостационарного спутника Нітаwari-8 на примере извержения вулкана Карымский 3 ноября 2021. Определение параметров H_2SO_4 проводится по характеристикам собственного излучения вулканического облака в инфракрасных (ИК) каналах на длинах волн 8.5, 11 и 12 мкм.

Методика восстановления параметров H_2SO_4 основана на использовании оптических моделей, каждая из которых представляет собой таблицу зависимостей массового коэффициента ослабления (m_{ext}), альбедо однократного рассеяния (ω) и индикатрисы рассеяния (g) от длины волны λ для различных эффективных радиусов (r_e) аэрозольных частиц. Построение оптических моделей осуществлялось с помощью расчетов Ми для широкого диапазона r_e аэрозольных компонентов вулканического облака. В таблице 1 представляен пример оптических моделей для однокомпонентных аэрозолей.

λ,	Андезит			H_2SO_4			Капли воды			Крист. льда		
МКМ	r _e =2 мкм,			r _e =0.6 мкм,			r _e =10 мкм,			r _e =30 мкм,		
	$\rho = 2.6 \ r/cm^3$			$\rho = 1.84 \text{ г/см}^3$			$\rho = 1.0 \ r/cm^3$			$ ho = 0.917$ г/см 3		
	mext	ω	g	mext	ω	g	mext	ω	g	mext	ω	g
8.0	57	0.13	0.74	420	0.06	0.22	218	0.76	0.90	63	0.54	0.94
9.0	281	0.3	0.48	374	0.13	0.22	201	0.74	0.91	64	0.56	0.93
10.0	307	0.33	0.44	225	0.2	0.24	159	0.67	0.92	64	0.57	0.95
11.0	248	0.47	0.49	211	0.11	0.19	115	0.43	0.93	57	0.48	0.96
12.0	163	0.64	0.53	94	0.22	0.21	124	0.36	0.91	61	0.50	0.93
13.0	116	0.65	0.55	72	0.16	0.17	145	0.39	0.89	63	0.51	0.91
$m_{ext} - [m^3/\kappa M \cdot \Gamma]$												

Таблица 1. Оптические параметры аэрозольных компонентов

В ходе работы было построено большое количество различных оптических моделей, как для однокомпонентных аэрозолей, так и их смесей в различных пропорциях. Были получены следующие смеси: андезит и кристаллы льда; андезит и капли воды; андезит и H₂SO₄; H₂SO₄ и капли воды.

Зная величину параметра m_{ext} из модели и оптическую толщину аэрозоля (τ_{aer}), восстановленную по спутниковым измерениям, можно определить массовое содержание (M_{aer}) H₂SO₄ по следующей формуле [1]:

$$M_{aer} = \frac{P \cdot \tau_{aer}}{m_{ext}} \tag{1}$$

где P – процентное содержание H₂SO₄ в аэрозольной смеси.

Точность оценки M_{aer} будет зависеть от правильности выбора оптической модели, который осуществляется путем сопоставления между собой измеренных и смоделированных отношений оптических толщин ($\tau_{aer,\lambda 1}/\tau_{aer,\lambda 2}$) на двух длинах волн 12/11 мкм и 8.5/11 мкм. Использование такого подхода для выбора модели обусловлено тем, что отношение $\tau_{aer,\lambda 1}/\tau_{aer,\lambda 2}$, определённое по спутниковым данным, в силу малых эффектов многократного рассеяния в ИК диапазоне 8 – 13 мкм, будет равно модельному, вычисленному по теории Ми [2,3]:

$$\frac{\tau_{aer,\lambda_1}}{\tau_{aer,\lambda_2}} \approx \frac{(1 - \omega_{\lambda_1} \cdot g_{\lambda_1})m_{ext,\lambda_1}}{(1 - \omega_{\lambda_2} \cdot g_{\lambda_2})m_{ext,\lambda_2}}$$
(2)

Правильный выбор оптической модели позволяет определить не только M_{aer} , но и тип аэрозоля, m_{ext} и r_e . Подход по использованию отношений оптических толщин для определения параметров перистых облаков по спутниковым данным в свое время был представлен в работе [2], а также в работах [3,4] для определения параметров вулканического пепла.

Выбрав оптическую модель, можно с помощью выражения (1) определить, как общее массовое содержание аэрозоля. Результаты восстановленных параметров H₂SO₄ представлены на рис. 1.

Рисунок 1 – Параметры вулканического H₂SO₄ a) Инвертированное цветосинтезированное изображение АНІ (BTD₁₂₋₁₁, BTD_{8.5-11}, BT₁₁) б) Массовое содержание H₂SO₄ в) Оптическая толщина H₂SO₄ на длине волны 550 нм г) Общая оптическая толщина вулканического аэрозоля на длине волны 550 нм

Синтез спектральных каналов, представленный на рис 1а, позволяет визуально оценить на спутниковом изображении области с сернокислым аэрозолем (синий цвет). Видно, что общая оптическая толщина аэрозоля (рис. 1г) отличается от оптической толщины H_2SO_4 (рис. 1в). Это говорит о том, что сернокислое облако представляет собой смесь различных аэрозольных компонентов. В данном случае это смесь H_2SO_4 и воды. Определив из оптической модели долю воды в сернокислом облаке, можно оценить массовое содержание H_2SO_4 , которое представляено на рис. 1б.

В ходе работы представлена методика восстановления параметров вулканического H_2SO_4 по спутниковым данным. В основе методики лежит использование оптических моделей для различных смесей аэрозольных компонентов вулканического облака, представленных пеплом, кристаллами льда, каплями воды и каплями H_2SO_4 . Использование многокомпонентных моделей с различными сочетаниями аэрозольных фракций позволило на примере извержения вулкана Карымский правильно оценить спектральные характеристики вулканического облака и восстановить оптическую толщину и массовое содержание H_2SO_4 . Использование такого подхода позволяет специалистам-вулканологам проводить комплексный анализ вулканических облаков для оценки их степени опасности.

1. *Ensor D.S., Pilat M.J.* Calculation of Smoke Plume Opacity from Particulate Air Pollutant Properties // Journal of the Air Pollution Control Association. 1971. V. 21. №. 8. P. 496–501.

2. *Parol F., Buriez J.C., Brogniez G., Fouquart Y.* Information-content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles // J. Appl. Meteorol. 1991. V. 30. P. 973–984.

3. *Pavolonis M., Heidinger A.K., Sieglaff J.* Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements // J. Geophys. Res.: Atmos. 2013. V. 118. №. 3. P. 1436–1458.

4. *Filei A.A., Marenco F.* Retrieval of volcanic ash parameters from satellite data // Russian Meteorology and Hydrology. 2021. V. 46. No. 4. P. 269–279.