and also exhibit a negative correlation between Sr concentration and $\delta^{44/Sr}$. These data are consistent with the previous interpretation that the "parasite" nodules represent completely solidified trachytic liquid inclusions. For both the trachyte and syenite, the $\delta^{44/Sr}$ value of the minimum $\delta^{44/Sr}_{\text{Sr}}$ of 0.70491 of Holocene alkali basalts (Wisdom et al., 1995) are higher than that on the flank of Agra de Poses volcano. These basaltic feldspars may therefore be representative of rocks formed from the trachytic-syenitic liquid fraction. Crystal fractionation combined with shallow-level contamination were therefore active processes in the evolution of the Fogo magma system.

V52A-09 1330h POSTER

Melt Inclusions in Breccia Xenoliths Pyroxene Phenocrysts from Campi Flegrei (Italy). Relationship with Mt. Somma-Vesuvius Volcanism

Benedetta De Vivo1 (*) 89-81-5800331, devivob@unimi.it
Leonid Victorovich Daszywski2 (*+38-02020069, Leonid@unimi.it)

1 Dipartimento di Gisentifico e Vulcanologia, Università di Napoli Federico II, Via Mezzocannone, 8, Napoli, 80134, Italy
2School of Earth Sciences, University of Turin, PO box 275-198, Vato, Turin 10124, Italy

We studied xenoliths of trachybasalts and basaltic andesites containing phenocrysts of clinopyroxene from Campi Flegrei (Italy) and the main volcanic complexes of Vesuvius (Somma-Vesuvius). These xenoliths contain clinopyroxene, plagioclase, olivine, and accessory spinel, ilmenite, and apatite. The clinopyroxene phenocrysts are zoned in the core to rim, with the presence of a "hydridic jump" within the clinopyroxene phenocrysts. As an example, at a plagioclase angle of 45 degrees and slope angle 25 degrees, the slope of the mixture in the middle of the channeled decreased from 0.11 m/s to 0.08 m/s due to the formation of a new liquid during channel modification by deposition and erosion. The flux of channel modification due to the causes for changes in flow in cupola includes channel modification by deposition and erosion, and that the depth of the channel change changes due to these processes.

V52B-02 1330h POSTER

The Formation of the Chute and the Channel at the Foot of the Andesitic Dome of Bezymyanny Volcano

Olga A. Girina1,2,3 716-456-6800 ext. 2461, girina@acrcu.edu, mib@geology.buffalo.edu
1Institute of Volcanology and Geocryology, 5, Avenue Pl., Petropavlovsk 689006, Russian Federation
2State University of New York at Buffalo, Department of Geology, 876 Natural Science Complex, SUNY at Buffalo, Buffalo, NY 14260, United States

The volcanoes of the Bezymyanny volcano group are the most active volcanoes in Russia. In the last two decades after the emergence of the volcano, the Bezymyanny volcano group in the evolution of the andesitic dome No.1 in the eruptions. After 1977, volcanic eruptions began to evolve in the volcano, and the most significant event was the eruption of the summit crater; ash explosions of various magnitudes and small-volume lava flows. As a consequence of eruption by rolling dome block, the eruption of the summit crater, and the accumulation of debris, a new lava channel formed. On the NW, the channel directed the flow from the dome. The channel opened onto the sea, and the depth of the channel increased from 40 cm to 1 m. After the eruption of 9.18.70, the channel reached a length of 1500 m and a depth of 15-20 m. But from 1980 to 1984, the size of the chute varied depending on the scale of the eruption. The shape of the channel varied from a smooth, shallow form to a steep, narrow form. The most powerful eruption after 1956 happened in 1981. The volume of the new eruptive channel was large, and the distance from the dome to the channel mouth was 8 km. Before this eruption, the entrance of the channel was narrow, and the chute turned into the channel over an angle of 100 degrees. After this eruption, a triangular section of the channel wall, which had blocked the entrance of the channel, was removed, and the new condition of the channel mouth was filled in its upper part to 100 m.

In 1985, lava flows began to effuse into the explosive funnel. In 1986, the huge explosive funnel (with a volume of 0.018-0.027 m3) was filled. In 1990, a new channel was opened into the sea, and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed. The channel opened into the sea, and pyroclastic and pyroclastic flows which accompanied the effusion of lava flows were formed.