Institute of Volcanology and Seismology FEB RAS Repository
IVS FEB RAS
Поиск
Browse
IVS FEB RAS Items
Statistics
Instruction
Links

Decoding crystal fractionation in calc-alkaline magmas from the Bezymianny Volcano (Kamchatka, Russia) using mineral and bulk rock compositions

Almeev Renat R., Kimura Jun-Ichi, Ariskin Alexei A., Ozerov Alexey Yu. (2013) Decoding crystal fractionation in calc-alkaline magmas from the Bezymianny Volcano (Kamchatka, Russia) using mineral and bulk rock compositions // Journal of Volcanology and Geothermal Research. Vol. 263, pp. 141 - 171. doi: 10.1016/j.jvolgeores.2013.01.003.

[img]
Preview
Text
2013_Almeev-Bezy.pdf

Download (2MB) | Preview

Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

We present a new dataset for whole-rock major, trace, isotopic, and phenocryst compositions indicating a genetic link between andesites of the Holocene eruptions of the Bezymianny stratovolcano (the Bezymianny stage), the andesitic to dacitic Late Pleistocene lava dome complex (the pre-Bezymianny stage), and the magnesian to high-alumina basalts of the adjacent Kliuchevskoi Volcano. We demonstrate that volcanic products from the Bezymianny stage of volcano evolution are most likely the products of magma mixing between silicic products of the earliest stages of magma fractionation and the less evolved basaltic andesite parental melts periodically injected into the magma reservoir. In contrast, the intermediate and silicic magmas of the pre-Bezymianny stage together with basalts from Kliuchevskoi much more closely resemble the liquid line of descent and may represent a unique prolonged and continuous calc-alkaline trend of magma evolution from high-magnesian basalt to dacite. As a result of the geothermobarometry, we recognize variable conditions of magma fractionation and magma storage beneath Bezymianny for different magma types during its evolution since the Late Pleistocene: (1) 1100–1150 °C, 500–640 MPa, 1–2.5 wt. H2O for parental basaltic andesite; (2) 1130–1050 °C, 700–600 MPa, 2.5–5 wt. H2O for two-pyroxene andesites; (3) 1040–990 °C, 560–470 MPa, 5–6.5 wt. H2O for orthopyroxene-bearing andesites; (4) 950–1000 °C, 450–150 MPa, 3.5–5.5 wt. H2O for hornblende-bearing andesites; and (5) 950–900 °C, 410–250 MPa, 6–7 wt. H2O for dacites. Repeated basalt injections and magma fractionation combined with internal mixing in the magma chamber are the main processes responsible for both the complex petrography and the geochemical trends observed in the lavas of Bezymianny Volcano.
Item Type: Article
Title: Decoding crystal fractionation in calc-alkaline magmas from the Bezymianny Volcano (Kamchatka, Russia) using mineral and bulk rock compositions
Language: English
Journal or Publication Title: Journal of Volcanology and Geothermal Research
ISSN Print: 0377-0273
Uncontrolled Keywords: Bezymianny Volcano, Fractional crystallization, Magma mixing, Calc-alkaline trend of magma differentiation, Link between HMBs, HABs, andesites and dacites
Subjects: State scientific and technical information rubricator (ГРНТИ) > 38 ГЕОЛОГИЯ > 38.37 Петрография > 38.37.25 Вулканология
Volcanoes > 1 Volcanoes of the Kurile-Kamchatka Region > 1.1 Kamchatka > Bezymianny
Volcanoes > 1 Volcanoes of the Kurile-Kamchatka Region > 1.1 Kamchatka > Klyuchevskoy
Additional Information: Magma System Response to Edifice Collapse
Depositing User: И.М. Романова
Date Deposited: 17 Dec 2015 06:46
Last Modified: 11 Mar 2019 04:27
URI: http://repo.kscnet.ru/id/eprint/2546

Actions (login required)

View Item View Item