Буханова Д.С., Плечов П.Ю. (2017) Условия формирования Au-Cu-порфирового месторождения Малмыжское, Хабаровский край (по данным исследования флюидных включений) // Вестник КРАУНЦ. Серия: Науки о Земле. Вып. 34. № 2. С. 61-71.
Предварительный просмотр |
Полный текст
Bukhanova_Plechov.pdf Скачать (3MB) | Предварительный просмотр |
Официальный URL: http://www.kscnet.ru/journal/kraesc/article/view/1...
Аннотация
Представлены результаты исследования флюидных включений из кварцевых жил и прожилков пересекающих метасоматиты, вмещающие рудную минерализацию, в различных частях Центральной системы Малмыжского золото-меднопорфирового месторождения (Хабаровский край). Установлена стадийность формирования месторождения. Выявлены характерные для различных стадий геохимические и P-T условия. Для определения состава многофазных флюидных включений использовались методы рамановской спектроскопии и электронный микрозондовый анализ. Данные изучения флюидных включений показывают, что месторождение начинает формироваться из Fe-Ca-Na-К-(Cl-S-С-О-H) расплава, сосуществующего с водяным паром очень низкой плотности, при температуре ~800−900°С. Формирование порфировых руд месторождения происходило в постмагматической гидротермальной обстановке на глубине 1−2 км в диапазоне температур от 580 до 330°С.
Аннотация (перевод)
The paper presents the results of study of fluid inclusions from quartz lodes and veinlets crossing the ore body in different parts of the Central district of the Malmyzhskoye gold-copper porphyry deposit (Khabarovsky krai). The authors revealed the staging of deposit formation. Specific chemical and P-T conditions are proposed for different stages. The Raman spectroscopy methods and electron microprobe analysis were used to determine the composition of the multiphase fluid inclusions. These fluid inclusions indicate that the deposit begins to form from the Fe-Ca-Na-К-(Cl-S-С-О-H) melt, which coexists with low density water vapor at a high temperature of about 800-900°С. The porphyry ores in the deposit were formed under the post-magmatic hydrothermal conditions between depths of 1-2 km over a temperature range of 580 to 330°С.
Тип объекта: | Статья |
---|---|
Название: | Условия формирования Au-Cu-порфирового месторождения Малмыжское, Хабаровский край (по данным исследования флюидных включений) |
Название (перевод): | The formation of Malmyzhskoye Au-Cu-porphyry deposit, Khabarovsky Krai (based on the study of fluid inclusions) |
Язык: | Русский |
Издание: | Вестник КРАУНЦ. Серия: Науки о Земле |
ISSN Print: | 1816-5524 |
ISSN Online: | 1816-5532 |
Ключевые слова: | генезис Малмыжского золото-меднопорфирового месторождения, флюидные включения, Malmyzhskoye Cu-Au-porphyry deposit genesis, fluid inclusions |
Тематика: | 3 ГРНТИ - Государственный рубрикатор научно-технической информации > 38 ГЕОЛОГИЯ > 38.33 Геохимия > 38.33.15 Геохимия отдельных элементов |
Список литературы: | Буханова Д.С. Высокотемпературные газово-жидкие включения в жильном кварце медно-порфирового месторождения Малмыж, Дальний Восток России // Материалы XIII региональной молодежной научной конференции «Природная среда Камчатки». ИВиС ДВО РАН. 2014. С. 69−80.
Буханова Д.С. Малмыжское Au-Cu-порфировое месторождение (Хабаровский край): условия формирования Центрального участка по данным исследования флюидных включений // Материалы XIII региональной молодежной научной конференции «Исследования в области наук о Земле». ИВиС ДВО РАН. 2015. С. 4−16. Коваль П.В., Прокофьев В.Ю. Т-Р условия кристаллизации гранитоидов Монголо-Охотской зоны по данным исследования расплавных и флюидных включений // Петрология. 1998. Т. 6. № 5. С. 497−511. Перетяжко И.С., Савина Е.А. Флюидно-магматические процессы при образовании пород массива онгонитов Ары-булак (Восточное Забайкалье) // Геология и геофизика. 2010. Т. 51. № 10. С. 1423−1442. Ханчук А.И., Голозубов В.В., Симаненко В.П., Малиновский А.И. Гигантские складки с крутопадающими шарнирами в структурах орогенных поясов (на примере Сихотэ-Алиня) // ДАН. 2004. Т. 394. № 6. С. 791−795. Читалин А.Ф., Ефимов А.А., Воскресенский К.И. и др. Малмыж ― новая крупная золотомедно-порфировая система мирового класса на Сихотэ-Алине // Минеральные ресурсы России. Экономика и управление. 2013. № 3. С. 65−69. Banks N.A., Page N.J. Some observations that bear on the origin of porphyry copper deposits // United States Geol. Survey. 1977. № 77−127. 14 p. Bodnar R.J. Use of fluid inclusions in mineral exploration: comparison of observed features with theoretical and experimental data on ore genesis // Geological Survey Abstracts. 1981. V. 13. № 5. 412 p. Bodnar R.J., Lecumberri-Sanchez P., Moncada D., Steele-MacInnis M. Fluid inclusions in hydrothermal ore deposits // Treatise on Geochemistry. 2014. V. 13. P. 119−142. Bodnar R.J., Bean R.E. Temporal and spatial variations in hydrothermal fluid characteristics during vein filling in preore cover overlying deeply buried Porphyry Copper-type mineralization at Red Mountain Arizona // Economic Geology. 1980. V. 75. № 6. P. 876−893. Burnham C.W. Magmas and hydrothermal fluids // Geochemistry of Hydrothermal Ore Deposits / Editted by H.L. Barnes. Published by New York John Wiley and Sons Interscience Publication, 1979. P. 71−136. Campos E., Touret J.L.R., Nikogosian I. et al. Overheated, Cu-bearing magmas in the Zaldivar porphyry-Cu deposit, Northern Chile. Geodynamic consequences // Tectonophysics. 2002. V. 345. № 1. P. 229−251. Candela P.A., Piccoli P.M. Model ore-metal partitioning from melts into vapor and vapor/brine mixtures // Magmas, Fluids, and Ore Deposits. 1995. V. 23. P. 101−127. Cathles L.M. An analysis of the cooling of intrusives by groundwater convection which includes boiling // Economic Geology. 1977. V. 72. № 5. P. 804−826. Cline J.S., Bodnar R.J. Can economic porphyry copper mineralization be generated by a typical Calc-Alkaline melt? // JGR. 1991. V. 96. № В5. P. 8113−8126. Corbett G.J., Leach T.M. Southwest Pacific Rim Gold-Copper systems: Structure, Alteration and Mineralization // Special Pub. Society of Economic Geology Ins. № 6. 1998. 237 p. Driesner T., Heinrich C.A. The System H2O-NaCl. I. Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 degrees C, 1 to 5000 bar, and 0 to 1 X-NaCl // Geochimica et Cosmochimica Acta. 2007. V. 71. № 20. P. 4902−4919. Eastoe C.J. A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea // Economic Geology. 1978. V. 73. № 5. P. 721−748. Eastoe C.J. The physics and chemistry of the hydrothermal system in the Panguna porphyry copper deposit, Bougainville, Papua New Guinea // Economic Geology. 1982. V. 77. № 1. P. 127−153. Eastoe C.J., Eadington P.J. High-temperature fluid inclusions and the role of the biotite granodiorite in mineralization at the Panguna porphyry copper deposit, Bougainville, Papua New Guinea // Economic Geology. 1986. V. 81. № 2. P. 478−483. Eugster H.P. Granites and hydrothermal ore deposits: A geo-chemical framework // Mineralogical Magazine. 1985. V. 49. № 350. P. 7−23. Gustafson L.B. Porphyry copper deposits and calcalkaline volcanism // The Earth: Its origin, structure and evolution / Editted by Mc M.W. Elhinny. Academic Press, 1979. P. 427−468. Hedenquist J.W., Lowenstern J.B. The role of magmas in the formation of hydrothermal ore deposits // Nature. 1994. V. 370. № 6490. P. 519−527. Hedenquist J.W., Richards J.P. The influence of geochemical techniques on the development of genetic models for porphyry copper deposits // Reviews in Economic Geology. 1998. V. 10. P. 235−256. Heinrich C.A., Halter W., Landtwing M.R. et al. The formation of economic porphyry copper (-gold) deposits: constraints from microanalysis of fluid and melt inclusions // Special publication ― Geological society of London. 2005. V. 248. 247 p. Henley R.W., McNabb A. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement // Economic Geology. 1978. V. 73. № 1. P. 1−20. Kamenetsky V.S., Wolfe R.C., Eggins S.M. et al. Volatile exsolution at the Dinkidi Cu-Au porphyry deposit, Philippines: А melt-inclusion record of the initial ore-forming process // Geology. 1999. V. 27. № 8. P. 691−694. Kodera P., Heinrich C.A., Wälle M. et al. Magmatic salt melt and vapor: Extreme fluids forming porphyry gold deposits in shallow subvolcanic settings // Geology. 2014. V. 42. № 6. P. 495−498. Landtwing M.R., Pettke T., Halter W.E. et al. Copper deposition during quartz dissolution by cooling magmatic−hydrothermal fluids: The Bingham porphyry // Earth and Planetary Science Letters. 2005. V. 235. № 1. P. 229−243. Li J.X., Li G.M., Qin K.Z. et al. High-temperature magmatic fluid exsolved from magma at the Duobuza porphyry copper-gold deposit, Northern Tibet // Geofluids. 2011. V. 11. № 2. P. 134−143. Moore W.J., Nash J.T. Alteration and fluid inclusion studies of the Porphyry Copper ore body at Bingham, Utah // Economic Geology. 1974. V. 69. № 5. P. 631−645. Nash J.T., Cunningham C.G. Fluid inclusions studies of the porphyry copper deposit at Bagdad, Arizona // U.S. Geological Survey Journal of Research. 1974. V. 2. P. 31−34. Nash J.T., Theodore T.G. Ore fluids in the porphyry copper deposit at Copper Canyon, Nevada // Economic Geology. 1971. V. 66. № 3. P. 385−399. Norton D.L. Fluid and heat transport phenomena typical of copper-bearing pluton environments // Advances in geology of porphyry copper deposits of southwestern North America. University of Arizona Press, Tucson. 1982. P. 59−72. Proffet J.M. Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina // Economic Geology. 2003. V. 98. № 8. P. 1535−1574. Reynolds T.J., Beane R.E. Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit // Economic Geology. 1985. V. 80. № 5. P. 1328−1347. Richards J.P. Magmatic to hydrothermal metal fluxes in convergent and collided margins // Ore Geology Reviews. 2011. V. 40. № 1. P. 1−26. Roedder E. Fluid inclusion studies on the Porphyry-type ore deposits at Bingham, Utah, Butte, Montana and Climax, Colorado // Economic Geology. 1971. V. 66. № 1. P. 98−118. Roedder E. Fluid inclusions // Reviews in Mineralogy / Editted by P.H. Ribbe. Washington, DC: Mineralogical Society of America, 1984. V. 12. P. 79−108. Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentiation // Geochim. Cosmochim. Acta. 1992. V. 56. № 1. P. 5−20. Roedder E., Coombs D.S. Immiscibility in granitic melts, indicated by fluid inclusions in ejected granitic blocks from Ascension Island // Journal of Petrology. 1967. V. 8. № 3. P. 417−451. Schiffries C.M. Liquid-absent aqueous fluid inclusions and phase equilibria in the system CaCl2-NaCl-H2O // Geochimica et Cosmochimica Acta. 1990. V. 54. № 3. P. 611−619. Shen P., Shen Y.C., Wang J.B. et al. Methane-rich fluid evolution of the Baogutu porphyry Cu-Mo-Au deposit, Xinjiang, NW China // Chemical Geology. 2010. V. 275. № 1. P. 78−98. Sillitoe R.H. Porphyry copper systems // Economic Geology. 2010. V. 105. №. 1. P. 3−41. Sillitoe R.H. Copper Provinces // SEG Special Publication 16 / Editted by J.W. Hedenquist, M. Harris, F. Camus. 2012. P. 1−18. Sinclair W.D. Porphyry deposits // Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication № 5. 2007. P. 223−243. Sterner S.M., Hall D.L., Bodnar R.J. Synthetic fluid inclusions: V. Solubility relations in the system NaCI-KCl-H2O under vapor-saturated conditions // Geochimica et Cosmochimica Acta. 1988. V. 52. № 5. P. 989−1005. Thomas R., Webster J.D., Heinrich W. Melt inclusions in pegmatite quartz: Complete miscibility between silicate melts and hydrous fluids at low pressure // Contributions to Mineralogy and Petrology. 2000. V. 139. № 4. P. 394−401. Titley S.R., Bean R.E. Porphyry copper deposits: Part I. Geologic settings, petrology, and tectonogenesis // Economic Geology. 75th Anniversary Volume. 1981. P. 214−235. Ulrich T., Gunther D., Heinrich C.A. The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology. 2002. V. 97. № 8. P. 1888−1920. Williams-Jones A.E., Heinrich C.A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits // Economic Geology. 2005. V. 100. № 7. P. 1287−1312. |
Разместивший пользователь: | И.М. Романова |
Дата размещения: | 15 Сен 2017 05:45 |
Последнее изменение: | 15 Сен 2017 05:57 |
URI: | http://repo.kscnet.ru/id/eprint/3078 |
Действия с объектом
Редактировать (только для владельца) |