Institute of Volcanology and Seismology FEB RAS Repository
IVS FEB RAS
Search
Browse
IVS FEB RAS Items
Statistics
Instruction
Links

Особенности морфологии и кинематики восточного сегмента Юго-Западно-Индийского хребта между трансформным разломом Мелвилл и тройным сочленением Родригес

Добролюбова К.О. (2019) Особенности морфологии и кинематики восточного сегмента Юго-Западно-Индийского хребта между трансформным разломом Мелвилл и тройным сочленением Родригес // Вестник КРАУНЦ. Серия: Науки о Земле. Вып. 42. № 2. С. 57-66. doi: 10.31431/1816-5524-2019-2-42-57-66.

[thumbnail of Dobrolyubova.pdf]
Preview
Text
Dobrolyubova.pdf

Download (6MB) | Preview

Abstract

Крайний восточный сегмент Юго-Западного-Индийского хребта (ЮЗИХ) представляет собой уникальную клиновидную структуру. Отсутствие трансформных смещений в этом районе объясняется молодостью, аномально малой мощностью коры, а также ультрамедленными скоростями раскрытия, при которых пространственные напряжения компенсируются локальной трещиноватостью. В плане фиксируется наличие двух систем трещиноватости: одна из которых, вероятно, является отражением растягивающих напряжений глобального порядка, связанных с движением литосферных плит, а вторая маркирует локальные процессы растяжения. Четкая вдольосевая сегментация ЮЗИХ, является, скорее всего, отражением локальных плановых перестроек, которые имели место в процессе раскрытия клина. Компиляция фактического материала, полученного в рейсах НИС «Академик Николай Страхов», и литературных данных позволяет сделать вывод о том, что раскрытие бассейна, скорее всего, идет по сценарию пассивного компенсационного разрыва, инициированного глобальной геодинамической перестройкой структурного плана Индийского океана.

Abstract (translation)

The eastern segment of the Southwest Indian Ridge is a unique wedge-shaped structure. The absence of transform faults in this region is explained by young age, anomalously low crustal power, and ultra slow spreading, at which spatial stresses are compensated by local fracture. The plan shows the presence of two fracture systems: one was probably caused by tensile stresses of global order associated with the movement of lithospheric plates, and the other is an evidence of local stretching processes. The clear longitudinal segmentation of the Southwest Indian Ridge was most likely caused by local planned transformanions that occurred during the wedge opening. Compilation of facts obtained during the voyage of the R/V «Akademik Nikolai Strakhov» and literature data allows us to conclude that the opening of the basin most likely follows the scenario of a passive compensatory gap initiated by the global geodynamic restructuring of the structural plan in the Indian Ocean.
Item Type: Article
Title: Особенности морфологии и кинематики восточного сегмента Юго-Западно-Индийского хребта между трансформным разломом Мелвилл и тройным сочленением Родригес
Title (translation): Peculiarities of morphology and kinematics of the eastern segment in the Southwestern Indian Ridge between a Melville transform fault and triple junction zone Rodriges
Language: Russian
Journal or Publication Title: Вестник КРАУНЦ. Серия: Науки о Земле
ISSN Print: 1816-5524
ISSN Online: 1816-5532
Uncontrolled Keywords: клиновидный спрединговый бассейн, Юго-Западно-Индийский хребет, тройное сочленение Родригес, wedge-shaped spreading basin, South-West Indian Ridge, triple junction Rodrigues
Subjects: 3 State scientific and technical information rubricator (ГРНТИ) > 38 ГЕОЛОГИЯ > 38.47 Геоморфология > 38.47.19 Геоморфология морского дна
References: Дубинин Е.П., Кохан А.В., Сущевская А.М. Тектоника и магматизм ультрамедленных спрединговых хребтов // Геотектоника. 2013. № 3. С. 3–30 [Dubinin E.P., Kokhan A.V., Sushchevskaya N.M. Tectonics and magmatism of ultraslow spreading ridges // Geotectonics. 2013. V. 47. № 3. P. 131–155].
Пейве А.А. Аккреция океанической коры в условиях косого спрединга // Геотектоника. 2009. № 2. С. 5–19 [Peive A.A. Accretion of Oceanic Crust under Conditions of Oblique Spreading // Geotectonics. 2009. № 2. С. 5–19 (in Russian)].
Сущевская Н.М., Каменецкий В.С., Беляцкий Б.В., Артамонов А.В. Геохимическая эволюция магматизма Индийского океана // Геохимия. 2013. № 8. С. 663–689 [Sushchevskaya N.M., Kamenetsky V.S., Belyatsky B.V., Artamonov A.V. Geochemical evolution of Indian Ocean basaltic magmatism // Geochemistry International. 2013. V. 51. № 8. P. 599–622].
Сущевская Н.М., Цехоня Т.И., Дубинин Е.П. и др. Формирование океанской коры в системе срединно-океанических хребтов Индийского океана // Геохимия. 1996. № 10. С. 963–975 [Sushchevskaya N.M., Tsekhonya T.I., Kononkova N.N. et al. Formation of oceanic crust in mid-ocean ridges of the Indian Ocean // Geochemistry International. 1996. V. 34. № 10. С. 869–880].
Хуторской М.Д., Тевелева Е.А. Асимметрия теплового потока на срединно-океанических хребтах в Северном и Южном полушариях Земли // Георесурсы. 2018. № 2. С. 122-132 [Khutorskoy M.D., Teveleva E.A. Heat flow asymmetry on the mid-oceanic ridges of Northern and Southern Earth hemispheres // Georesursy Georesources 2018. V. 20. № 2. P. 122–132. https://doi.org/10.18599/grs.2018.2.122-132 (in Russian)].
Хуторской М.Д., Поляк Б.Г. Особенности теплового потока в трансформных разломах северной Атлантики и юго-восточной Пацифики // Геотектоника. № 2. 2017. С. 55–66. https://doi.org/10.7868/S0016853X17010027 [Khutorskoi M.D., Polyak B.G. Special features of heat flow in transform faults of the North Atlantic and Southeast Pacific // Geotectonics. 2017. V. 51. № 2. P. 152–162. https://doi.org/10.1134/S0016852117010022].
Шрейдер А.А., Кашинцев Г.Л. Особенноетси тектоно-магматической эволюции Юго-Западного Индийского срединно-овеанического хребта на отрезке 51º–67º в.д. // Океанология. 2010. Т. 50. № 1. С. 121–129 [Shreider A.A., Kashintsev G.L. Peculiarities of the tectonic and magma evolution of the southwestern Indian middle-ocean crust within the range of 51º–67º eastern longitude // Oceanology. 2010. V. 50. № 1. P. 113–120].
АNSS Earthquake Composite Catalog. 2014. http://quake.geo.berkeley.edu/anss/. выборка 11.02.2014.
Baines A.G., Cheadle M.J., Dick H.J.B. et al. Evolution of the Southwest Indian Ridge from 55º45′E to 62ºE: Changes in plate-boundary geometry since 26 Ma // Geochemistry Geophysics Geosystems. V. 8. 2007. P. 1–31. https://doi.org/10.1029/2006GC001559.
Dic H.J.B., Natlan J.H., Miller D.J. et al. 1999. Proc. ODP, Init. Repts., 176 (CDROM). Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, U.S.A. http://www-odp.tamu.edu/publications/176_IR/176TOC.HTM
Dick H.J., Lin J., Schouten H. An ultraslow-spreading class of ocean ridge // Nature. 2003. V. 426. P. 405–412.
Cannat M., Sauter D., Mendel V. et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge // Geology. 2006. V. 34. №. 7. P. 605–608. https://doi.org/10.1130/G22486.1.
Grand S.P., van der Hilst R.D., Widiyantoro S. Global seismic Tomography: A snapshot of convection in the Earth // GSA Today. 1997. V. 7. № 4. P. 1–7.
GEBCO 30′′ Bathymetry Grid. Version 20141103. 2014. (http://www.gebco.net).
Maus S., Barckhausen U., Berkenbosch H. et al. EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements // Geochemistry, Geophysics, Geosystems. 2009. V. 10. P. 1–12. https://doi.org/10.1029/2009GC002471.
Minshull T.A., Muller M.R., White R.S. Crustal structure of the Southwest Indian Ridge at 66E: Seismic constraints // Geophysical Journal International. 2006. V. 166. P. 135–147. https://doi.org/10.1111/j.1365-246X.2006.03001.x.
Minshull T.A., White R.S. Thin crust on the flanks of the slow-spreading Southwest Indian Ridge // Geophysical Journal International. 1996. V. 125. P. 139–148.
Muller M., Minshull T., White R. Segmentation and melt supply at the Southwest Indian Ridge // Geology. 1999. V. 27. P. 867–870.
Muller R.D., Sdrolias M., Gaina C. et al. Age, spreading rates, and spreading asymmetry of the world’s ocean crust // Geochemistry, Geophysics, Geosystems. 2008. V. 9. № 4. P. 1–19. https://doi.org/10.1029/2007GC001743.
Patriat P., Sloan H., Sauter D. From slow to ultra-slow: A previously undetected event at the Southwest Indian Ridge ca. 24 Ma // Geology. 2008. V. 36. P. 207–210. https://doi.org/10.1130/g24270a.1.
Sandwell D., Smith W. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate // JGR. 2009. V. 114. B01411. 18 р. https://doi.org/10.1029/2008JB006008.
Sauter D., Cannat M. The ultraslow spreading Southwest Indian ridge. In : Diversity of hydrothermal systems on slow spreading ocean ridges // Geophysical Monograph Series 188. 2010. AGU. P. 153–173. https://doi.org/10.1029/2008GM000843.
Sauter D., Cannat M., Rouméjon S. et al. Continuous exhumation of mantlederived rocks at the Southwest Indian Ridge for 11million years // Nature Geosc. 2013. V. 6. P. 314–320. https://doi.org/10.1038/ngeo1771.
Sauter D., Carton H., Mendel V., Munschy M. et al. Ridge segmentation and the magnetic structure of the Southwest Indian Ridge at 55°30'E, 55°30'E and 66°20'E): implications for magmatic processes at ultraslow-spreading centers // Geochemistry, Geophysics, Geosystems. 2004a. V. 5. Iss. 5. P. 1–25. https://doi.org/10.1029/2003GC000581.
Sauter D., Mendel V., Rommevaux-Jestin C., Parson L. et al. Focused magmatism versus amagmatic spreading along the ultra-slow spreading Southwest Indian Ridge: Evidence from TOBI side scan sonar imagery // Geochemistry, Geophysics, Geosystems. 2004b. V. 5. Iss. 10. P. 1–20. https://doi.org/10.1029/2004GC000738.
Sclater J.G., Grindlay N.R., Madsen J.A. et al. Tectonic interpretation of the Andrew Bain transform fault: Southwest Indian Ocean // Geochemistry, Geophysics, Geosystems. 2005. V. 6. P. 1–21. https://doi.org/10.1029/2005GC000951.
Sclate J., Fisher R., Patriat P. et al. Eocene to recent development of the South-west Indian Ridge, a consequence of the evolution of the Indian Ocean Triple Junction // Geophysical Journal International. 1981. V. 64. Iss. 3. P. 587–604.
Searle R., Bralee A. Asymmetric generation of oceanic crust at the ultra-slow spreading Southwest Indian Ridge, 64E // Geochemistry, Geophysics, Geosystems. 2007. V. 8. № 5. P. 1–28. https://doi.org/10.1029/2006GC001529.
Seyler M., Cannat M., Mevel C. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge 52° to 68°E) // Geochemistry, Geophysics, Geosystems. 2003. V. 4. P. 1–33. https://doi.org/10.1029/2002GC000305.
Depositing User: И.М. Романова
Date Deposited: 10 Jul 2019 22:18
Last Modified: 11 Jul 2019 02:40
URI: http://repo.kscnet.ru/id/eprint/3641

Actions (login required)

View Item View Item