Репозиторий Института вулканологии и сейсмологии ДВО РАН
Институт вулканологии и сейсмологии ДВО РАН
Поиск
Просмотр
Объекты ИВиС
Статистика
Помощь
Ссылки

Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka

Portnyagin Maxim, Hoernle Kaj, Plechov Pavel Yu., Mironov Nikita, Khubunaya Sergey (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka // Earth and Planetary Science Letters. Vol. 255, No. 1-2. pp. 53-69. doi: 10.1016/j.epsl.2006.12.005.

[thumbnail of 2007 -main.pdf]
Предварительный просмотр
Полный текст
2007 -main.pdf

Скачать (1MB) | Предварительный просмотр

Аннотация

New and published data on the composition of melt inclusions in olivine (Fo73_yi) from volcanoes of the Kamchatka and northern Kurile Arc are used 1) to evaluate the combined systematics of volatiles (H2O, S, Cl, F) and incompatible trace elements in their parental magmas and mantle sources, 2) to constrain thermal conditions of mantle melting, and 3) to estimate the composition of slab-derived components. We demonstrate that typical Kamchatkan arc-type magmas originate through 5-14% melting of sources similar or slightly more depleted in HFSE (with up to -1 wt.% previous melt extraction) compared to MORB-source mantle, but strongly enriched in H2O,B, Be, Li, Cl. F, LILE, LREE, Th and U. Mean H2O in parental melts f 1.8-2.6 wt.%) decreases with increasing depth to the subducting slab and correlates negatively with both 'fluid-immobile* (e.g. Ti, Na, LREE) and most 'fluid-mobile' (e.g. LILE, S, Cl, F) incompatible elements, implying that solubility in hydrous fluids or amount of water does not directly control the abundance of 'fluid-mobile' incompatible elements. Strong correlation is observed between H2O/Ce and B/Zr (or B/LREE) ratios. Both, calculated H2O in mantle sources (0.1-0.4%) and degrees of melting (5-14%) decrease with increasing depth to the slab indicating that the ultimate source of water in the sub-arc mantle is the subducting oceanic plate and that water flux (together with mantle temperature) governs theextent of mantle melting beneath Kamchatka. A parameterized hydrous melting model [Katzetal. 2003, G3,4(9), 1073] is utilized to estimate that mantle melting beneath Kamchatka occurs at or below the dry peridotite solidus (1245-1330 °C at 1.5-2.0 GPa). Relatively high mantle temperatures (yet lower than beneath back-arc basins and ocean ridges) suggest substantial corner flow driven mantle upwelling beneath Kamchatka in agreement with numerical models implying non-isoviscous mantle wedge rheology. Data from Kamchatka, Mexico and Central America indicate that <5% melting would lake place beneath continental arcs without water flux from the subducting slab. A broad negative correlation appears to exist between crustal thickness and the temperature of magma generation beneath volcanic arcs with larger amounts of decompression melting occurring beneath thinner arc crust (Uihosphere). In agreement with the high mantle temperatures, we observe a systematic change in the composition of slab components with increasing slab depth from solute-poor hydrous fluid beneath the volcanic front to solute-rich hydrous melt or supercritical liquid at deeper depths beneath the rear arc. The solute-rich slab component dominates the budget of LILE, LREE,Th and U in the magmas and originates through wet-melting of subducted sediments and/or altered oceanic crust at > 120 km depth. Melting of the upper parts of subducting plates under water flux from deeper luhosphere (e.g. serpentinites), combined with high .emperatures in the mantie wedge, may be a more common process beneath volcanic arcs than has been previously recognized. 0 2006 Klsevier B.V. All rights reserved.
Тип объекта: Статья
Название: Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka
Название (перевод): Условия плавления мантии, состав и особенности компонентов плиты в вулканических дугах по летучим (H2O, S, Cl, F) и микроэлементам в расплавных включениях Камчатки
Язык: English
Издание: Earth and Planetary Science Letters
ISSN Print: 0012-821X
Тематика: 3 ГРНТИ - Государственный рубрикатор научно-технической информации > 38 ГЕОЛОГИЯ > 38.33 Геохимия > 38.33.15 Геохимия отдельных элементов
3 ГРНТИ - Государственный рубрикатор научно-технической информации > 38 ГЕОЛОГИЯ > 38.33 Геохимия > 38.33.17 Геохимия природных процессов
3 ГРНТИ - Государственный рубрикатор научно-технической информации > 38 ГЕОЛОГИЯ > 38.35 Минералогия > 38.35.19 Включения в минералах
3 ГРНТИ - Государственный рубрикатор научно-технической информации > 38 ГЕОЛОГИЯ > 38.37 Петрография > 38.37.25 Вулканология
1 Вулканы > 1.1 Вулканы Курило-Камчатского региона > 1.1.2 Курильские острова > Чикурачки
1 Вулканы > 1.1 Вулканы Курило-Камчатского региона > 1.1.1 Камчатка > Карымский
1 Вулканы > 1.1 Вулканы Курило-Камчатского региона > 1.1.1 Камчатка > Ксудач
1 Вулканы > 1.1 Вулканы Курило-Камчатского региона > 1.1.1 Камчатка > Плоский Толбачик
1 Вулканы > 1.1 Вулканы Курило-Камчатского региона > 1.1.1 Камчатка > Ключевской
Список литературы: [1] j.В. Gill. Orogenic Andesites arid Plate Tectonics, Springer-Verlag, Berlin-Heidelberg, 1981 390 pp.
[2] M.T. McCulloch, J.A. Gamble, Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci. Lett. 102 (1991) 358-374.
[3] E. Stolper, S. Newman, The role of water in the petrogenesis of Mariana Trough magmas, Earth Planet Sci. Lett. 121 (3-4) (1994)293 325.
[4] J.M. Eiler, A. Crawford, T. Elliott, K. A. Farley, J.W. Valley, E.M. Stolper, Oxygen isotope geochemistry of oceanic-arc lavas, J. Petrol 41 (2) (2000) 239 256.
[5] T. Plank, C.H. Langmuir. An evaluation of the global variations in the major element chemistry of arc basalts, Earth Planet. Sci. Lett 9O(1988]349-370.
[6] J.A. Pearce, P.E. Baker, P.K. Harvey, I.W. Luff, Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the south sandwich island arc. J. Petrol. 36 (4) (1995) 1073-1109.
[7] T.W. Sisson. S. Bronto. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia, Nature 391 (1998) 883-886.
[8] M.B. Baker, Т.Г.. Grove. R. Price. Primitive basalts and andesites from the Mt. Shasta region, N. California: products of varying melt fraction and water content. Contrib. Mineral. Petrol, i 18 (1994)111 129.
[9] A.V. Sobolev, M. Chaussidon, H2O concentrations in primary melts from island arcs and mid-ocean ridges: implications for H2O storage and recycling in the mantle, Earth Planet. Sci. Lett. 137(1996)45-55.
[10] P.J. Wallace, Volatiles in subduction zone magmas: concentra¬tions and fluxes based on melt inclusion and volcanic gas data, J. Vulcanol. Geomerm. Res. 140 (1-3) (2005) 217-240.
[11] A. Gorbatov, V Kostoglodov, G. Suarez, E. Gordeev, Seismicity and structure of the Kamchatka subduction zone. J. Geophys. Res. 102 (B8) (1997) 17833-17898.
[12] S.P.e. Fedotov, Active volcanoes of Kamchatka, 302 (V.I) 415 (V.2) pp.. Nauka, Moscow, 1991.
[13] O.N. Volynets, Geochemical types. petrology, and genesis of the late Cenozoic volcanic rocks from the Kurile Kamchatka island-arc system. Int. Geol. Rev. 36 (4) (1994) 373-403.
[14] A.A. Gurenko, A.B. Belousov, R.B. Trumbull, A.V. Sobolev, Explo¬sive basaltic volcanism of the Chikurachki Volcano (Kurile are, Russia]: insights on pre-emptive magmatic conditions and volatile budget revealed from phenocryst-hosted melt inclusions and ground-mass glasses. J. Volcanol, Geotherm. Res. 147 (2005) 203-232.
[15] L. Danyushevsky, A.W. McNeill. A.V. Sobolev, Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications, Chem. Geol. 183 (2002) 5-24.
[16] L.V. Danyushevsky, F.N. Della-Pasqua. S. Sokolov, Re-equilibra¬tion of melt inclusions trapped by magnesian olivine phenocrysts from subduct ion -related magmas: petrological implications, Con¬trib. Mineral. Petrol. 138 (2000) 68 83.
[17] L.V. Danyushevsky, A.V Sobolev, Ferric-ferrous ratio and oxygen fugacity calculations for primitive mantle-derived melts: calibration of an empirical technique, Mineralogy and Petrology 57 (3-4) (1996) 229-241.
[18] K. Kelley, T. Plank, T.L. Grove, E, Stolper, S. Newman. E. Henri, Mantle melting as a function of water content beneath back-arc.
basins, J. Geophys. Res. 111 (B09208) (2006), doi:10.1029/ 2005JB003732.
[19] J. Blundy, K. Cashman, M. Humphrys, Magma heating by decompression-driven crystallization beneath andesite volanoes, Nature 443 (2006) 76-80.
[20] K. Roggensack, R.L. Hervig, S.B. McKnight, S.N. Williams, Explosive basalic volcanism from Cerro Negro volcano: influence of volatiles on eruptive style, Science 277 (September 12 1997) 1639-1642.
[21] J.A. Wade, T. Plank, W.G. Melson, G.J. Soto, E. Hauri, The volatile content of magmas from Arenal volcano, Costa Rica, J. Volcanol. Geotherm. Res. 157 (2006) 94-120.
[22] P. Cervantes, P.J. Wallace, Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico, Geology 31 (3) (2003) 235-238.
[23] E. Roedder, Fluid inclusions, Miner. Soc. Amer. Book Crafters Inc., Michigan, 1984, 644 pp.
[24] A. V. Sobolev, Melt inclusions in minerals as a source of principal petrological information, Petrology 4 (1996) 209-220.
[25] D. Massare, N. Metrich, R. Clocchiatti, High-temperature experiments on silicate melt inclusions in olivine at 1 atm: inference on temperatures of homogenization and H2O concen¬trations, Chem. Geol. 183 (2002) 87-98.
[26] E. Hauri, J. Wang, J.E. Dixon, P.L. King, С Mandeville, S. Newman, SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR, Chem. Geol. 183(2002)99-114.
[27] V.S. Kamenetsky, S.M. Eggins, A.J. Crawford, D.H. Green, M. Gasparon, T.J. Falloon, Calcic melt inclusions in primitive olivine at 43oN MAR: evidence for melt-rock reaction/melting involving clinopyroxene-rich lithologies during MORB genera¬tion, Earth Planet. Sci. Lett. 160 (1998) 115-132.
[28] V.J.M. Salters, A. Stracke, Composition of the depleted mantle, Geochem. Geophys. Geosyst. 5 (5) (2004) Q05004, doi:10.1029/ 2003GC000597.
[29] S.-S. Sun, W.F. McDonough, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in: A.D. Saunders, M.J. Norry (Eds.), Magmatism in the Ocean Basins, Geological Society Special Publication, London, vol. 42, 1989, pp. 313-345.
[30] A.W. Hofmann, Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust, Earth Planet. Sci. Lett. 90 (1988) 297-314.
[31] R.K. Workman, S.R. Hart, Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett. 231 (1-2) (2005) 53-72.
[32] J.A. Pearce, D.W Peate, Tectonic implications of the composition of volcanic arc magmas, Annu. Rev. Earth Planet. Sci. 23 (1995) 251-285.
[33] J.A. Pearce, I.J. Parkinson, Trace element models for mantle melting: application to volcanic arc petrogenesis, in: H.M. Prichard, T. Alabaster, N.B. Harris, C.R. Neary (Eds.), Magmatic Processes and Plate Tectonics, Geological Society Special Publication, vol. 76, 1993, pp. 373-403.
[34] T. Churikova, F. Dorendorf, G. Worner, Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation, J. Petrol. 42 (8) (2001) 1567-1593.
[35] M.J. Carr, M.D. Feigenson, E.A. Bennett, Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc, Contrib. Mineral. Petrol. 105 (1990)369-380.
[36] A.G. Hochstaedter, P. Kepezhinskas, M. Defant, M. Drummond, A. Koloskov, Insights into the volcanic arc mantle wedge from magnesian lavas from the Kamchatka arc, J. Geophys. Res., [Solid Earth] 101 (B1) (1996) 697-712.
[37] P.J. Michael, The concentration, behavior and storage of H2O in the suboceanic upper mantle: Implications for mantle metaso¬matism, Geochim. Cosmochim. Acta 52 (1988) 555-566.
[38] J.E. Dixon, D.A. Clague, P. Wallace, R. Poreda, Volatiles in alkalic basalts from the North Arch Volcanic Field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas, J. Petrol. 38 (1997) 911-939.
[39] A.R.L. Nichols, M.R. Carroll, A. Hoskuldsson, Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts, Earth Planet. Sci. Lett. 202 (1) (2002) 77-87.
[40] J.A. Walker, K. Roggensack, L.C. Patino, B.I. Cameron, O. Matias, The water and trace element contents of melt inclusions across an active subduction zone, Contrib. Mineral. Petrol. 146 (2003) 62-77.
[41] K. Roggensack, Unraveling the 1974 eruption of Fuego volcano (Guatemala) with small crystals and their young melt inclusions, Geology 29 (10) (2001) 911-914.
[42] M.M. Hirschmann, C. Aubaud, A.C. Withers, Storage capacity of H2O in nominally anhydrous minerals in the upper mantle, Earth Planet. Sci. Lett. 236 (1-2) (2005) 167-181.
[43] M.W. Schmidt, S. Poli, Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett. 163 (1998) 361-379.
[44] K. Hirose, T. Kawamoto, Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas, Earth Planet. Sci. Lett. 133 (1995) 463-473.
[45] M.M. Hirschmann, P.D. Asimov, M.S. Ghiorso, E.M. Stolper, Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production, J. Petrol. 40 (5) (1999) 831-851.
[46] R.F. Katz, M. Spiegelman, C.H. Lagmuir, A new parameterization of hydrous mantle melting, Geochem. Geophys. Geosyst. 4 (9) (2003) 1073, doi:10.1029/2002GC000433.
[47] S.A. Hubunaya, A.V. Sobolev, Primary melts of calc-alkaline magnesian basalts of Klyuchevskoy volcano (Kamchatka), Dokl. Akad. Sci. 360 (1) (1998) 100-102 (in Russian).
[48] J.H. Davies, D.J. Stevenson, Physical model of source region of subduction zone volcanics, J. Geophys. Res. 97 (B2) (1992) 2037-2070.
[49] S.M. Peacock, T. Rushmer, A.B. Thompson, Partial melting of subducting oceanic crust, Earth Planet. Sci. Lett. 121 (1—2) (1994)227-244.
[50] P.E. van Keken, B. Kiefer, S.M. Peacock, High resolution models for subduction zones: implications for mineral dehydration reactions and the transport of water into deep mantle, Geochem. Geophys. Geosyst. 3 (2002).
[51] S.M. Peacock, P.E.v. Keken, S.D. Holloway, B.R. Hacker, G.A. Abers, R.L. Fergason, Thermal structure of the Costa Rica — Nicaragua subduction zone, Phys. Earth Planet. Inter. 149 (1—2) (2005) 187-200.
[52] V.C. Manea, M. Manea, V. Kostoglodov, G. Sewell, Thermal models, magma transport and velocity anomaly estimation beneath Southern Kamchatka (Chapter 31), in: G.R. Foulger, D.L. Anderson, J.H. Natland, D.C. Presnall (Eds.), Plates, Plumes and Paradigms, Geological Society of America Special Paper, vol. 388, 2005, pp. 517-536.
[53] H. Keppler, Constraints from partitioning experiments on the composition of subduction-zone fluids, Nature 380 (1996) 237-240.
[54] J.M. Brenan, H.F. Shaw, F.J. Reyrson, D.L. Phinney, Mineral-aqueous fluid partitioning of trace elements at 900 °C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids, Geochim. Cosmochim. Acta 59 (16) (1995) 3331-3350.
[55] M.C. Johnson, T. Plank, Dehydration and melting experiments constrain the fate of subducted sediments, Geochem. Geophys. Geosyst. 1 (1999) (Paper number 1999GC000014. Dec. 13, 1999).
[56] R. Kessel, M.W. Schmidt, P. Ulmer, T. Pettke, Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth, Nature 437 (29 September 2005) 724-727.
[57] T. Plank, Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents, J. Petrol. 46 (5) (2005) 921-944.
[58] S. Duggen, M. Portnyagin, J. Baker, D. Ulfbeck, K. Hoernle, D. Garbe-Schönberg, N. Grassineau, Drastic shift in lava geochem¬istry in the volcanic-front to reararc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting, Geochimica et Cosmochimica Acta (2006), doi:10.1016/j.gca.2006.09.018.
[59] J.A. Hoogewerff, M.J. Van Bergen, P.Z. Vroon, J. Hertogen, R. Wordel, A. Sneyers, A. Nasution, J.C. Varekamp, H.L.E. Moens, D. Mouchel, U-series, Sr—Nd—Pb isotope and trace-element system-atics across an active island arc-continent collision zone: implica-tions for element transfer at the slab-wedge interface, Geochim. Cosmochim. Acta 61 (5) (1997) 1057-1072.
[60] J.G. Ryan, J. Morris, F. Tera, W.P. Leeman, A. Tsvetkov, Cross-arc geochemical variations in the Kurile Arc as a function of slab depth, Science 270 (5236) (1995) 625-627.
[61] L. Ruepcke, J. Phipps Morgan, M. Hort, J.A.D. Connolly, Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30(11) (2002) 1035-1038.
[62] P.B. Kelemen, K. Hangøj, A.R. Greene, One view of the geochemistry of subduction-related magmatic arcs, with and emphasis on primitive andesite and lower crust, Treatise on Geochemistry, vol. 3, Elsevier, 2003, pp. 593—659.
[63] S.J. Sadofsky, K. Hoernle, P. van den Bogaard, M. Portnyagin, Subducted Water beneath Central America: How Does Output Vary Along the Volcanic Front? Contributions to Mineralogy and Petrology, submitted for publication.
[64] V.S. Kamenetsky, J.L. Everard, A.J. Crawford, R. Varne, S.M. Eggins, R. Lanyon, Enriched end-member of primitive MORB melts: petrology and geochemistry of glasses from Macquarie island (SW Pacific), J. Petrol. 41 (3) (2000) 411-430.
[65] L.V. Danyushevsky, S.M. Eggins, T.J. Falloon, D.M. Christie, H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; Part I: incompatible behaviour, implications for mantle storage, and origin of regional variations, J. Petrol. 41 (8) (2000) 1329-1364.
[66] T. Plank, C.H. Langmuir, The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol. 143 (1998) 325-394.
Разместивший пользователь: В.С. Хубуная
Дата размещения: 19 Мар 2015 04:25
Последнее изменение: 19 Мар 2015 05:35
URI: http://repo.kscnet.ru/id/eprint/2140

Действия с объектом

Редактировать (только для владельца) Редактировать (только для владельца)