Репозиторий Института вулканологии и сейсмологии ДВО РАН
Институт вулканологии и сейсмологии ДВО РАН
Поиск
Просмотр
Объекты ИВиС
Статистика
Помощь
Ссылки

Detecting Volcano Thermal Activity in Night Images Using Machine Learning and Computer Vision

Korolev S.P., Urmanov I.P., Sorokin A.A., Girina O.A. ORCID logoORCID: https://orcid.org/0000-0003-4918-2338 (2023) Detecting Volcano Thermal Activity in Night Images Using Machine Learning and Computer Vision // Remote Sensing. Vol. 15, Iss. 19. No. 4815. doi: 10.3390/rs15194815.

Полный текст отсутствует в этом репозитории.

Аннотация

One of the most important tasks when studying volcanic activity is to monitor their thermal radiation. To fix and assess the evolution of thermal anomalies in areas of volcanoes, specialized hardware-thermal imagers are usually used, as well as specialized instruments of modern satellite systems. The data obtained with their help contain information that makes it relatively easy to track changes in temperature and the size of a thermal anomaly. At the same time, due to the high cost of such complexes and other limitations, thermal imagers sometimes cannot be used to solve scientific problems related to the study of volcanoes. In the current paper, day/night video cameras with an infrared-cut filter are considered as an alternative to specialized tools for monitoring volcanoes’ thermal activity. In the daytime, a camera operated in the visible range, and at night the filter was removed, increasing the camera’s light sensitivity by allowing near-infrared light to hit the sensor. In that mode, a visible thermal anomaly could be registered on images, as well as other bright glows, flares, and other artifacts. The purpose of this study is to detect thermal anomalies on night images, separate them from other bright areas, and find their characteristics, which could be used for volcano activity monitoring. Using the image archive of the Sheveluch volcano as an example, this article presents the results of developing a computer algorithm that makes it possible to find and classify thermal anomalies on video frames with an accuracy of 98%. The test results are presented, along with their validation based on thermal activity data obtained from satellite systems.
Тип объекта: Статья
Название: Detecting Volcano Thermal Activity in Night Images Using Machine Learning and Computer Vision
Язык: English
Издание: Remote Sensing
Ключевые слова: volcano monitoring; thermal anomaly; night image; IR-cut filter
Тематика: 3 ГРНТИ - Государственный рубрикатор научно-технической информации > 28 КИБЕРНЕТИКА > 28.17 Теория моделирования > 28.17.19 Математическое моделирование
3 ГРНТИ - Государственный рубрикатор научно-технической информации > 38 ГЕОЛОГИЯ > 38.37 Петрография > 38.37.25 Вулканология
Связанные URL:
Разместивший пользователь: к.г.-.м.н. О.А. Гирина
Дата размещения: 03 Окт 2023 23:08
Последнее изменение: 03 Окт 2023 23:08
URI: http://repo.kscnet.ru/id/eprint/4540

Действия с объектом

Редактировать (только для владельца) Редактировать (только для владельца)